{"title":"揭示掺杂 O 和 S 在改善 FeN4C 电化学氧气还原反应性能中的共性","authors":"Yuan Yuan, Jiapeng Ma, Baotao Kang, Jin Yong Lee","doi":"10.1021/acscatal.4c06491","DOIUrl":null,"url":null,"abstract":"Heteroatom-doped Fe-N-C catalysts have emerged as promising alternatives to noble metals for the oxygen reduction reaction (ORR) due to their lower cost. However, the underlying mechanisms responsible for their enhanced performance, particularly electrochemical stability, remain a subject of debate. This study leverages density functional theory calculations coupled with a constant potential and implicit solvent model to investigate the electrochemical stabilities and activities of pyridinic (PD-) and pyrrolic FeN<sub>4</sub>C (PL-FeN<sub>4</sub>C) catalysts. Our findings reveal that the hydrogenation susceptibility of coordinating nitrogen atoms is a critical determinant of electrochemical stability within FeN<sub>4</sub>C catalysts. Moreover, we demonstrate that oxygen and sulfur doping exerts similar effects on enhancing the overall ORR performance of PD-FeN<sub>4</sub>C catalysts: (1) by reducing the p-band center of the coordinating nitrogen, thereby improving their resistance to hydrogenation, and (2) by increasing the valence electrons of iron, leading to stronger adsorption of reaction intermediates and consequently enhanced ORR activity. Finally, our predictions suggest that O/S-doped PL-FeN<sub>4</sub>C catalysts could achieve significantly improved electrochemical stability and superior ORR performance in both acidic and alkaline environments. These insights contribute to a deeper understanding of microenvironment engineering in single-atom catalysts (SACs) and offer valuable guidelines for the development of unprecedented M-N-C catalysts.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"20 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Common Nature of O and S Doping in Improving Electrochemical O2 Reduction Reaction Performance of FeN4C\",\"authors\":\"Yuan Yuan, Jiapeng Ma, Baotao Kang, Jin Yong Lee\",\"doi\":\"10.1021/acscatal.4c06491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heteroatom-doped Fe-N-C catalysts have emerged as promising alternatives to noble metals for the oxygen reduction reaction (ORR) due to their lower cost. However, the underlying mechanisms responsible for their enhanced performance, particularly electrochemical stability, remain a subject of debate. This study leverages density functional theory calculations coupled with a constant potential and implicit solvent model to investigate the electrochemical stabilities and activities of pyridinic (PD-) and pyrrolic FeN<sub>4</sub>C (PL-FeN<sub>4</sub>C) catalysts. Our findings reveal that the hydrogenation susceptibility of coordinating nitrogen atoms is a critical determinant of electrochemical stability within FeN<sub>4</sub>C catalysts. Moreover, we demonstrate that oxygen and sulfur doping exerts similar effects on enhancing the overall ORR performance of PD-FeN<sub>4</sub>C catalysts: (1) by reducing the p-band center of the coordinating nitrogen, thereby improving their resistance to hydrogenation, and (2) by increasing the valence electrons of iron, leading to stronger adsorption of reaction intermediates and consequently enhanced ORR activity. Finally, our predictions suggest that O/S-doped PL-FeN<sub>4</sub>C catalysts could achieve significantly improved electrochemical stability and superior ORR performance in both acidic and alkaline environments. These insights contribute to a deeper understanding of microenvironment engineering in single-atom catalysts (SACs) and offer valuable guidelines for the development of unprecedented M-N-C catalysts.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c06491\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c06491","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unraveling the Common Nature of O and S Doping in Improving Electrochemical O2 Reduction Reaction Performance of FeN4C
Heteroatom-doped Fe-N-C catalysts have emerged as promising alternatives to noble metals for the oxygen reduction reaction (ORR) due to their lower cost. However, the underlying mechanisms responsible for their enhanced performance, particularly electrochemical stability, remain a subject of debate. This study leverages density functional theory calculations coupled with a constant potential and implicit solvent model to investigate the electrochemical stabilities and activities of pyridinic (PD-) and pyrrolic FeN4C (PL-FeN4C) catalysts. Our findings reveal that the hydrogenation susceptibility of coordinating nitrogen atoms is a critical determinant of electrochemical stability within FeN4C catalysts. Moreover, we demonstrate that oxygen and sulfur doping exerts similar effects on enhancing the overall ORR performance of PD-FeN4C catalysts: (1) by reducing the p-band center of the coordinating nitrogen, thereby improving their resistance to hydrogenation, and (2) by increasing the valence electrons of iron, leading to stronger adsorption of reaction intermediates and consequently enhanced ORR activity. Finally, our predictions suggest that O/S-doped PL-FeN4C catalysts could achieve significantly improved electrochemical stability and superior ORR performance in both acidic and alkaline environments. These insights contribute to a deeper understanding of microenvironment engineering in single-atom catalysts (SACs) and offer valuable guidelines for the development of unprecedented M-N-C catalysts.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.