{"title":"挤压 MPS 流形产生的纠缠增长","authors":"Sebastian Leontica, Andrew G. Green","doi":"10.1038/s41467-025-56959-8","DOIUrl":null,"url":null,"abstract":"<p>Finding suitable characterizations of quantum chaos is a major challenge in many-body physics, with a central difficulty posed by the linearity of the Schrödinger equation. A possible solution for recovering non-linearity is to project the dynamics onto some variational manifold. The classical chaos induced via this procedure may be used as a signature of quantum chaos in the full Hilbert space. Here, we demonstrate analytically a previously heuristic connection between the Lyapunov spectrum from projection onto the matrix product state (MPS) manifold and the growth of entanglement. This growth occurs by squeezing a localized distribution on the variational manifold. The process qualitatively resembles the Cardy-Calabrese picture, where local perturbations to a moving MPS reference are interpreted as bosonic quasi-particles. Taking careful account of the number of distinct channels for these processes recovers the connection to the Lyapunov spectrum. Our results rigorously establish the physical significance of the projected Lyapunov spectrum, suggesting it as an alternative method of characterizing chaos in quantum many-body systems, one that is manifestly linked to classical chaos.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entanglement growth from squeezing on the MPS manifold\",\"authors\":\"Sebastian Leontica, Andrew G. Green\",\"doi\":\"10.1038/s41467-025-56959-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finding suitable characterizations of quantum chaos is a major challenge in many-body physics, with a central difficulty posed by the linearity of the Schrödinger equation. A possible solution for recovering non-linearity is to project the dynamics onto some variational manifold. The classical chaos induced via this procedure may be used as a signature of quantum chaos in the full Hilbert space. Here, we demonstrate analytically a previously heuristic connection between the Lyapunov spectrum from projection onto the matrix product state (MPS) manifold and the growth of entanglement. This growth occurs by squeezing a localized distribution on the variational manifold. The process qualitatively resembles the Cardy-Calabrese picture, where local perturbations to a moving MPS reference are interpreted as bosonic quasi-particles. Taking careful account of the number of distinct channels for these processes recovers the connection to the Lyapunov spectrum. Our results rigorously establish the physical significance of the projected Lyapunov spectrum, suggesting it as an alternative method of characterizing chaos in quantum many-body systems, one that is manifestly linked to classical chaos.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56959-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56959-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Entanglement growth from squeezing on the MPS manifold
Finding suitable characterizations of quantum chaos is a major challenge in many-body physics, with a central difficulty posed by the linearity of the Schrödinger equation. A possible solution for recovering non-linearity is to project the dynamics onto some variational manifold. The classical chaos induced via this procedure may be used as a signature of quantum chaos in the full Hilbert space. Here, we demonstrate analytically a previously heuristic connection between the Lyapunov spectrum from projection onto the matrix product state (MPS) manifold and the growth of entanglement. This growth occurs by squeezing a localized distribution on the variational manifold. The process qualitatively resembles the Cardy-Calabrese picture, where local perturbations to a moving MPS reference are interpreted as bosonic quasi-particles. Taking careful account of the number of distinct channels for these processes recovers the connection to the Lyapunov spectrum. Our results rigorously establish the physical significance of the projected Lyapunov spectrum, suggesting it as an alternative method of characterizing chaos in quantum many-body systems, one that is manifestly linked to classical chaos.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.