铜氧化物超导趋势的量子多体原初描述

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhi-Hao Cui, Junjie Yang, Johannes Tölle, Hong-Zhou Ye, Shunyue Yuan, Huanchen Zhai, Gunhee Park, Raehyun Kim, Xing Zhang, Lin Lin, Timothy C. Berkelbach, Garnet Kin-Lic Chan
{"title":"铜氧化物超导趋势的量子多体原初描述","authors":"Zhi-Hao Cui, Junjie Yang, Johannes Tölle, Hong-Zhou Ye, Shunyue Yuan, Huanchen Zhai, Gunhee Park, Raehyun Kim, Xing Zhang, Lin Lin, Timothy C. Berkelbach, Garnet Kin-Lic Chan","doi":"10.1038/s41467-025-56883-x","DOIUrl":null,"url":null,"abstract":"<p>Using a systematic ab initio quantum many-body approach that goes beyond low-energy models, we directly compute the superconducting pairing order and estimate the pairing gap of several doped cuprate materials and structures within a purely electronic picture. We find that we can correctly capture two well-known trends: the pressure effect, where the pairing order and gap increase with intra-layer pressure, and the layer effect, where the pairing order and gap vary with the number of copper-oxygen layers. From these calculations, we observe that the strength of superexchange and the covalency at optimal doping are the best descriptors for these trends. Our microscopic analysis further identifies that strong short-range spin fluctuations and multi-orbital charge fluctuations drive the development of the pairing order. Our work illustrates the possibility of a material-specific ab initio understanding of unconventional high-temperature superconducting materials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"50 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio quantum many-body description of superconducting trends in the cuprates\",\"authors\":\"Zhi-Hao Cui, Junjie Yang, Johannes Tölle, Hong-Zhou Ye, Shunyue Yuan, Huanchen Zhai, Gunhee Park, Raehyun Kim, Xing Zhang, Lin Lin, Timothy C. Berkelbach, Garnet Kin-Lic Chan\",\"doi\":\"10.1038/s41467-025-56883-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using a systematic ab initio quantum many-body approach that goes beyond low-energy models, we directly compute the superconducting pairing order and estimate the pairing gap of several doped cuprate materials and structures within a purely electronic picture. We find that we can correctly capture two well-known trends: the pressure effect, where the pairing order and gap increase with intra-layer pressure, and the layer effect, where the pairing order and gap vary with the number of copper-oxygen layers. From these calculations, we observe that the strength of superexchange and the covalency at optimal doping are the best descriptors for these trends. Our microscopic analysis further identifies that strong short-range spin fluctuations and multi-orbital charge fluctuations drive the development of the pairing order. Our work illustrates the possibility of a material-specific ab initio understanding of unconventional high-temperature superconducting materials.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56883-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56883-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ab initio quantum many-body description of superconducting trends in the cuprates

Ab initio quantum many-body description of superconducting trends in the cuprates

Using a systematic ab initio quantum many-body approach that goes beyond low-energy models, we directly compute the superconducting pairing order and estimate the pairing gap of several doped cuprate materials and structures within a purely electronic picture. We find that we can correctly capture two well-known trends: the pressure effect, where the pairing order and gap increase with intra-layer pressure, and the layer effect, where the pairing order and gap vary with the number of copper-oxygen layers. From these calculations, we observe that the strength of superexchange and the covalency at optimal doping are the best descriptors for these trends. Our microscopic analysis further identifies that strong short-range spin fluctuations and multi-orbital charge fluctuations drive the development of the pairing order. Our work illustrates the possibility of a material-specific ab initio understanding of unconventional high-temperature superconducting materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信