一种基于mof的单分子丙烯纳米陷阱,用于从乙烯中捕获丙烯。

Chem & Bio Engineering Pub Date : 2024-07-29 eCollection Date: 2024-12-26 DOI:10.1021/cbe.4c00102
Jia-Xin Wang, Teng-Fei Zhang, Jiyan Pei, Di Liu, Yu-Bo Wang, Xiao-Wen Gu, Guodong Qian, Bin Li
{"title":"一种基于mof的单分子丙烯纳米陷阱,用于从乙烯中捕获丙烯。","authors":"Jia-Xin Wang, Teng-Fei Zhang, Jiyan Pei, Di Liu, Yu-Bo Wang, Xiao-Wen Gu, Guodong Qian, Bin Li","doi":"10.1021/cbe.4c00102","DOIUrl":null,"url":null,"abstract":"<p><p>Highly selective capture and separation of propylene (C<sub>3</sub>H<sub>6</sub>) from ethylene (C<sub>2</sub>H<sub>4</sub>) presents one of the most crucial processes to obtain pure C<sub>2</sub>H<sub>4</sub> in the petrochemical industry. The separation performance of current physisorbents is commonly limited by insufficient C<sub>3</sub>H<sub>6</sub> binding affinity, resulting in poor low-pressure C<sub>3</sub>H<sub>6</sub> uptakes or inadequate C<sub>3</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> selectivities. Herein, we realize a unique single-molecule C<sub>3</sub>H<sub>6</sub> nanotrap in an ultramicroporous MOF material (Co(pyz)[Pd(CN)<sub>4</sub>], ZJU-74a-Pd), exhibiting the benchmark C<sub>3</sub>H<sub>6</sub> capture capacity at low-pressure regions. This MOF-based nanotrap features the sandwichlike strong multipoint binding sites and the perfect size match with C<sub>3</sub>H<sub>6</sub> molecules, providing an ultrastrong C<sub>3</sub>H<sub>6</sub> binding affinity with the maximal <i>Q</i> <sub>st</sub> value (55.8 kJ mol<sup>-1</sup>). This affords the nanotrap to exhibit one of the highest C<sub>3</sub>H<sub>6</sub> uptakes at low pressures (60.5 and 103.8 cm<sup>3</sup> cm<sup>-3</sup> at 0.01 and 0.1 bar) and record-high C<sub>3</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> selectivity (23.4). Theoretical calculations reveal that the perfectly size-matched pore cavities combined with sandwichlike multibinding sites enable this single-molecule C<sub>3</sub>H<sub>6</sub> nanotrap to maximize the C<sub>3</sub>H<sub>6</sub> binding affinity, mainly accounting for its record low-pressure C<sub>3</sub>H<sub>6</sub> capture capacity and selectivity. Breakthrough experiments further confirm its excellent separation capacity for actual 1/99 and 50/50 C<sub>3</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> mixtures, affording the remarkably high pure C<sub>2</sub>H<sub>4</sub> productivities of 17.1 and 3.4 mol kg<sup>-1</sup>, respectively.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 11","pages":"952-959"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835284/pdf/","citationCount":"0","resultStr":"{\"title\":\"An MOF-Based Single-Molecule Propylene Nanotrap for Benchmark Propylene Capture from Ethylene.\",\"authors\":\"Jia-Xin Wang, Teng-Fei Zhang, Jiyan Pei, Di Liu, Yu-Bo Wang, Xiao-Wen Gu, Guodong Qian, Bin Li\",\"doi\":\"10.1021/cbe.4c00102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highly selective capture and separation of propylene (C<sub>3</sub>H<sub>6</sub>) from ethylene (C<sub>2</sub>H<sub>4</sub>) presents one of the most crucial processes to obtain pure C<sub>2</sub>H<sub>4</sub> in the petrochemical industry. The separation performance of current physisorbents is commonly limited by insufficient C<sub>3</sub>H<sub>6</sub> binding affinity, resulting in poor low-pressure C<sub>3</sub>H<sub>6</sub> uptakes or inadequate C<sub>3</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> selectivities. Herein, we realize a unique single-molecule C<sub>3</sub>H<sub>6</sub> nanotrap in an ultramicroporous MOF material (Co(pyz)[Pd(CN)<sub>4</sub>], ZJU-74a-Pd), exhibiting the benchmark C<sub>3</sub>H<sub>6</sub> capture capacity at low-pressure regions. This MOF-based nanotrap features the sandwichlike strong multipoint binding sites and the perfect size match with C<sub>3</sub>H<sub>6</sub> molecules, providing an ultrastrong C<sub>3</sub>H<sub>6</sub> binding affinity with the maximal <i>Q</i> <sub>st</sub> value (55.8 kJ mol<sup>-1</sup>). This affords the nanotrap to exhibit one of the highest C<sub>3</sub>H<sub>6</sub> uptakes at low pressures (60.5 and 103.8 cm<sup>3</sup> cm<sup>-3</sup> at 0.01 and 0.1 bar) and record-high C<sub>3</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> selectivity (23.4). Theoretical calculations reveal that the perfectly size-matched pore cavities combined with sandwichlike multibinding sites enable this single-molecule C<sub>3</sub>H<sub>6</sub> nanotrap to maximize the C<sub>3</sub>H<sub>6</sub> binding affinity, mainly accounting for its record low-pressure C<sub>3</sub>H<sub>6</sub> capture capacity and selectivity. Breakthrough experiments further confirm its excellent separation capacity for actual 1/99 and 50/50 C<sub>3</sub>H<sub>6</sub>/C<sub>2</sub>H<sub>4</sub> mixtures, affording the remarkably high pure C<sub>2</sub>H<sub>4</sub> productivities of 17.1 and 3.4 mol kg<sup>-1</sup>, respectively.</p>\",\"PeriodicalId\":100230,\"journal\":{\"name\":\"Chem & Bio Engineering\",\"volume\":\"1 11\",\"pages\":\"952-959\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835284/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem & Bio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/cbe.4c00102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/26 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbe.4c00102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高选择性地捕获和分离丙烯(C3H6)和乙烯(C2H4)是石化工业中获得纯C2H4的关键工艺之一。目前的物理吸附剂的分离性能通常受到C3H6结合亲和力不足的限制,导致低压C3H6摄取不良或C3H6/C2H4选择性不足。在此,我们在超微孔MOF材料(Co(pyz)[Pd(CN)4], ZJU-74a-Pd)中实现了独特的单分子C3H6纳米陷阱,在低压区域表现出基准的C3H6捕获能力。这种基于mof的纳米陷阱具有三明治状的强多点结合位点,与C3H6分子的大小完美匹配,提供了最大Q st值(55.8 kJ mol-1)的超强C3H6结合亲和力。这使得纳米阱在低压下(在0.01和0.1 bar下分别为60.5和103.8 cm3 cm-3)和创纪录的C3H6/C2H4选择性(23.4)表现出最高的C3H6吸收量之一。理论计算表明,完美匹配的孔洞和三明治状的多结合位点使单分子C3H6纳米陷阱能够最大限度地提高C3H6的结合亲和力,这主要是由于其创纪录的低压C3H6捕获能力和选择性。突破性实验进一步证实了其对实际的1/99和50/50 C3H6/C2H4混合物的优良分离能力,提供了非常高的C2H4纯度,分别为17.1和3.4 mol kg-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An MOF-Based Single-Molecule Propylene Nanotrap for Benchmark Propylene Capture from Ethylene.

Highly selective capture and separation of propylene (C3H6) from ethylene (C2H4) presents one of the most crucial processes to obtain pure C2H4 in the petrochemical industry. The separation performance of current physisorbents is commonly limited by insufficient C3H6 binding affinity, resulting in poor low-pressure C3H6 uptakes or inadequate C3H6/C2H4 selectivities. Herein, we realize a unique single-molecule C3H6 nanotrap in an ultramicroporous MOF material (Co(pyz)[Pd(CN)4], ZJU-74a-Pd), exhibiting the benchmark C3H6 capture capacity at low-pressure regions. This MOF-based nanotrap features the sandwichlike strong multipoint binding sites and the perfect size match with C3H6 molecules, providing an ultrastrong C3H6 binding affinity with the maximal Q st value (55.8 kJ mol-1). This affords the nanotrap to exhibit one of the highest C3H6 uptakes at low pressures (60.5 and 103.8 cm3 cm-3 at 0.01 and 0.1 bar) and record-high C3H6/C2H4 selectivity (23.4). Theoretical calculations reveal that the perfectly size-matched pore cavities combined with sandwichlike multibinding sites enable this single-molecule C3H6 nanotrap to maximize the C3H6 binding affinity, mainly accounting for its record low-pressure C3H6 capture capacity and selectivity. Breakthrough experiments further confirm its excellent separation capacity for actual 1/99 and 50/50 C3H6/C2H4 mixtures, affording the remarkably high pure C2H4 productivities of 17.1 and 3.4 mol kg-1, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信