通过模块化工程设计塑性结合溶解多糖单氧酶。

Chem & Bio Engineering Pub Date : 2024-09-27 eCollection Date: 2024-11-28 DOI:10.1021/cbe.4c00125
Alessia Munzone, Manon Pujol, Majda Badjoudj, Mireille Haon, Sacha Grisel, Anthony Magueresse, Sylvie Durand, Johnny Beaugrand, Jean-Guy Berrin, Bastien Bissaro
{"title":"通过模块化工程设计塑性结合溶解多糖单氧酶。","authors":"Alessia Munzone, Manon Pujol, Majda Badjoudj, Mireille Haon, Sacha Grisel, Anthony Magueresse, Sylvie Durand, Johnny Beaugrand, Jean-Guy Berrin, Bastien Bissaro","doi":"10.1021/cbe.4c00125","DOIUrl":null,"url":null,"abstract":"<p><p>The worldwide accumulation of plastic waste in the environment, along with its lifespan of hundreds of years, represents a serious threat to ecosystems. Enzymatic recycling of plastic waste offers a promising solution, but the high chemical inertness and hydrophobicity of plastics pose several challenges to enzymes. In nature, lytic polysaccharide monooxygenases (LPMOs) can act at the surface of recalcitrant biopolymers, taking advantage of their solvent-exposed active sites and appended carbohydrate-binding modules (CBMs). LPMOs can disrupt the densely packed chains of polysaccharides (e.g., cellulose) by the oxidation of C-H bonds. Given the similarities between these natural and artificial polymers, we aimed here at promoting plastic-binding properties to LPMOs, by swapping their CBM with three natural, surface-active accessory modules displaying different amphipathic properties. The polymer binding capacity of the resulting LPMO chimeras was assessed on a library of synthetic polymers, including polyester, polyamide, and polyolefin substrates. We demonstrated that the plastic binding properties of these engineered LPMOs are polymer-dependent and can be tuned by playing on the nature of the accessory module and reaction conditions. Remarkably, we gained full binding for some chimera LPMOs with striking results for polyhydroxyalkanoates (PHA). In the long term perspective of harnessing the unique copper chemistry of LPMOs to degrade plastics, we also provided the first evidence of LPMO-dependent modification of the PHA polymer, as supported by enzyme assays, gel permeation chromatography, and scanning electron microscopy. Altogether, our study provides the first roadmap for engineering plastic-binding ability in LPMOs, constituting a crucial first step on the evolutionary path toward efficient interfacial catalysis of plastic-active enzymes.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 10","pages":"863-875"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835289/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design of Plastic Binding Lytic Polysaccharide Monooxygenases via Modular Engineering.\",\"authors\":\"Alessia Munzone, Manon Pujol, Majda Badjoudj, Mireille Haon, Sacha Grisel, Anthony Magueresse, Sylvie Durand, Johnny Beaugrand, Jean-Guy Berrin, Bastien Bissaro\",\"doi\":\"10.1021/cbe.4c00125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The worldwide accumulation of plastic waste in the environment, along with its lifespan of hundreds of years, represents a serious threat to ecosystems. Enzymatic recycling of plastic waste offers a promising solution, but the high chemical inertness and hydrophobicity of plastics pose several challenges to enzymes. In nature, lytic polysaccharide monooxygenases (LPMOs) can act at the surface of recalcitrant biopolymers, taking advantage of their solvent-exposed active sites and appended carbohydrate-binding modules (CBMs). LPMOs can disrupt the densely packed chains of polysaccharides (e.g., cellulose) by the oxidation of C-H bonds. Given the similarities between these natural and artificial polymers, we aimed here at promoting plastic-binding properties to LPMOs, by swapping their CBM with three natural, surface-active accessory modules displaying different amphipathic properties. The polymer binding capacity of the resulting LPMO chimeras was assessed on a library of synthetic polymers, including polyester, polyamide, and polyolefin substrates. We demonstrated that the plastic binding properties of these engineered LPMOs are polymer-dependent and can be tuned by playing on the nature of the accessory module and reaction conditions. Remarkably, we gained full binding for some chimera LPMOs with striking results for polyhydroxyalkanoates (PHA). In the long term perspective of harnessing the unique copper chemistry of LPMOs to degrade plastics, we also provided the first evidence of LPMO-dependent modification of the PHA polymer, as supported by enzyme assays, gel permeation chromatography, and scanning electron microscopy. Altogether, our study provides the first roadmap for engineering plastic-binding ability in LPMOs, constituting a crucial first step on the evolutionary path toward efficient interfacial catalysis of plastic-active enzymes.</p>\",\"PeriodicalId\":100230,\"journal\":{\"name\":\"Chem & Bio Engineering\",\"volume\":\"1 10\",\"pages\":\"863-875\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835289/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem & Bio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/cbe.4c00125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbe.4c00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

世界范围内塑料垃圾在环境中的积累,以及它们数百年的寿命,对生态系统构成了严重威胁。塑料垃圾的酶回收提供了一个很有前途的解决方案,但塑料的高化学惰性和疏水性给酶带来了一些挑战。在自然界中,水解多糖单加氧酶(LPMOs)可以利用其溶剂暴露的活性位点和附加的碳水化合物结合模块(CBMs)在顽固性生物聚合物表面起作用。LPMOs可以通过氧化C-H键破坏多糖(如纤维素)的密集排列链。考虑到这些天然聚合物和人造聚合物之间的相似性,我们的目标是通过将它们的CBM与三种具有不同两亲性的天然表面活性附属模块交换来提高塑料与LPMOs的结合性能。所得到的LPMO嵌合体的聚合物结合能力在合成聚合物库上进行了评估,包括聚酯,聚酰胺和聚烯烃底物。我们证明了这些工程LPMOs的塑料结合特性是依赖于聚合物的,并且可以通过发挥附件模块的性质和反应条件来调节。值得注意的是,我们获得了一些嵌合体LPMOs的完全结合,并获得了聚羟基烷酸酯(PHA)的惊人结果。从长远的角度来看,利用lpmo独特的铜化学来降解塑料,我们也提供了lpmo依赖的PHA聚合物修饰的第一个证据,得到了酶分析、凝胶渗透色谱和扫描电子显微镜的支持。总之,我们的研究为LPMOs的工程塑料结合能力提供了第一个路线图,构成了塑料活性酶高效界面催化进化道路上至关重要的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Plastic Binding Lytic Polysaccharide Monooxygenases via Modular Engineering.

The worldwide accumulation of plastic waste in the environment, along with its lifespan of hundreds of years, represents a serious threat to ecosystems. Enzymatic recycling of plastic waste offers a promising solution, but the high chemical inertness and hydrophobicity of plastics pose several challenges to enzymes. In nature, lytic polysaccharide monooxygenases (LPMOs) can act at the surface of recalcitrant biopolymers, taking advantage of their solvent-exposed active sites and appended carbohydrate-binding modules (CBMs). LPMOs can disrupt the densely packed chains of polysaccharides (e.g., cellulose) by the oxidation of C-H bonds. Given the similarities between these natural and artificial polymers, we aimed here at promoting plastic-binding properties to LPMOs, by swapping their CBM with three natural, surface-active accessory modules displaying different amphipathic properties. The polymer binding capacity of the resulting LPMO chimeras was assessed on a library of synthetic polymers, including polyester, polyamide, and polyolefin substrates. We demonstrated that the plastic binding properties of these engineered LPMOs are polymer-dependent and can be tuned by playing on the nature of the accessory module and reaction conditions. Remarkably, we gained full binding for some chimera LPMOs with striking results for polyhydroxyalkanoates (PHA). In the long term perspective of harnessing the unique copper chemistry of LPMOs to degrade plastics, we also provided the first evidence of LPMO-dependent modification of the PHA polymer, as supported by enzyme assays, gel permeation chromatography, and scanning electron microscopy. Altogether, our study provides the first roadmap for engineering plastic-binding ability in LPMOs, constituting a crucial first step on the evolutionary path toward efficient interfacial catalysis of plastic-active enzymes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信