FDI攻击下非线性系统的扩展状态观测器反演控制。

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Ning Xu , Huiling Xu , Zhiping Lin , Jun Zhang
{"title":"FDI攻击下非线性系统的扩展状态观测器反演控制。","authors":"Ning Xu ,&nbsp;Huiling Xu ,&nbsp;Zhiping Lin ,&nbsp;Jun Zhang","doi":"10.1016/j.isatra.2025.02.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a novel extended state observer-based backstepping control scheme is proposed for strict-feedback nonlinear systems with unmeasured states suffering from false data injection (FDI) attacks. An extended state observer is designed to achieve simultaneous online estimation of system states and FDI attacks. A secure output feedback tracking control scheme with an attack compensation method is proposed to reduce the influence of FDI attacks. It is proven that the proposed scheme can guarantee that the closed-loop system is semi-global uniformly ultimately bounded. Moreover, it is shown that the observation errors can be as small as desired with an adjustable parameter and the tracking error can converge to a small neighborhood of the origin. Finally, two simulation examples verify the efficiency of the proposed approach.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"159 ","pages":"Pages 80-91"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended state observer-based backstepping control for nonlinear systems under FDI attacks\",\"authors\":\"Ning Xu ,&nbsp;Huiling Xu ,&nbsp;Zhiping Lin ,&nbsp;Jun Zhang\",\"doi\":\"10.1016/j.isatra.2025.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a novel extended state observer-based backstepping control scheme is proposed for strict-feedback nonlinear systems with unmeasured states suffering from false data injection (FDI) attacks. An extended state observer is designed to achieve simultaneous online estimation of system states and FDI attacks. A secure output feedback tracking control scheme with an attack compensation method is proposed to reduce the influence of FDI attacks. It is proven that the proposed scheme can guarantee that the closed-loop system is semi-global uniformly ultimately bounded. Moreover, it is shown that the observation errors can be as small as desired with an adjustable parameter and the tracking error can converge to a small neighborhood of the origin. Finally, two simulation examples verify the efficiency of the proposed approach.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"159 \",\"pages\":\"Pages 80-91\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057825000989\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825000989","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对具有非测量状态的严格反馈非线性系统受到假数据注入攻击的问题,提出了一种基于扩展状态观测器的反步控制方法。设计了一种扩展状态观测器来同时在线估计系统状态和FDI攻击。为了降低FDI攻击的影响,提出了一种带有攻击补偿方法的安全输出反馈跟踪控制方案。证明了该方案能保证闭环系统是半全局一致最终有界的。此外,在参数可调的情况下,观测误差可以尽可能小,跟踪误差可以收敛到原点的小邻域内。最后,通过两个仿真实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended state observer-based backstepping control for nonlinear systems under FDI attacks
In this paper, a novel extended state observer-based backstepping control scheme is proposed for strict-feedback nonlinear systems with unmeasured states suffering from false data injection (FDI) attacks. An extended state observer is designed to achieve simultaneous online estimation of system states and FDI attacks. A secure output feedback tracking control scheme with an attack compensation method is proposed to reduce the influence of FDI attacks. It is proven that the proposed scheme can guarantee that the closed-loop system is semi-global uniformly ultimately bounded. Moreover, it is shown that the observation errors can be as small as desired with an adjustable parameter and the tracking error can converge to a small neighborhood of the origin. Finally, two simulation examples verify the efficiency of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信