抗糖尿病药物天然产物的从头到尾筛选:ADMET分析、分子对接和分子动力学模拟。

In silico pharmacology Pub Date : 2025-02-17 eCollection Date: 2025-01-01 DOI:10.1007/s40203-025-00320-w
Sulyman Olalekan Ibrahim, Yusuf Oloruntoyin Ayipo, Halimat Yusuf Lukman, Fatimah Aluko Abubakar, Asiat Na'Allah, Rashidat Arije Katibi-Abdullahi, Marili Funmilayo Zubair, Olubunmi Atolani
{"title":"抗糖尿病药物天然产物的从头到尾筛选:ADMET分析、分子对接和分子动力学模拟。","authors":"Sulyman Olalekan Ibrahim, Yusuf Oloruntoyin Ayipo, Halimat Yusuf Lukman, Fatimah Aluko Abubakar, Asiat Na'Allah, Rashidat Arije Katibi-Abdullahi, Marili Funmilayo Zubair, Olubunmi Atolani","doi":"10.1007/s40203-025-00320-w","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic dysfunction which has implicated disease conditions such as diabetes highlights the urgency for the discovery of novel therapeutic alternatives. The rising global incidences of diabetes and the limitations of existing treatments further exacerbate the quest for novel antidiabetic agents' discovery. This study leverages computational approaches to screen selected bioactive natural product phytoconstituents for their potential anti-diabetic properties. Utilizing pharmaceutical profiling, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions, molecular docking, and molecular dynamics (MD) simulations, the drug-likeness and binding affinity of these natural compounds against human pancreatic amylase was investigated. Out of the total 24,316 ZINC compounds screened for their binding scores with amylase, ZINC85593620, ZINC85593668, and ZINC85490447 came top. The compounds had higher binding scores than the standards (acarbose and ranirestat) with ZINC85593620 having the highest docking score of - 12.162 kcal/mol and interacted with key amino acid residues such as TRP 59, ILE 148, and ASP 197. Further validation through MD simulations reveals that all the compounds showed minimal fluctuations relative to the standards indicating strong and stable binding interactions suggesting potential effective inhibition of the enzyme. ZINC85593620 and ZINC85593668 showed promising distribution and availability characteristics for amylase inhibition. Overall, the compounds displayed potential amylase inhibition which underscores their use as promising natural products in developing new antidiabetic drugs. Further experimental validations are recommended to offer a potential solution to the pressing need for safer and more effective antidiabetic therapies.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 1","pages":"29"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832966/pdf/","citationCount":"0","resultStr":"{\"title\":\"De novo in silico screening of natural products for antidiabetic drug discovery: ADMET profiling, molecular docking, and molecular dynamics simulations.\",\"authors\":\"Sulyman Olalekan Ibrahim, Yusuf Oloruntoyin Ayipo, Halimat Yusuf Lukman, Fatimah Aluko Abubakar, Asiat Na'Allah, Rashidat Arije Katibi-Abdullahi, Marili Funmilayo Zubair, Olubunmi Atolani\",\"doi\":\"10.1007/s40203-025-00320-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic dysfunction which has implicated disease conditions such as diabetes highlights the urgency for the discovery of novel therapeutic alternatives. The rising global incidences of diabetes and the limitations of existing treatments further exacerbate the quest for novel antidiabetic agents' discovery. This study leverages computational approaches to screen selected bioactive natural product phytoconstituents for their potential anti-diabetic properties. Utilizing pharmaceutical profiling, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions, molecular docking, and molecular dynamics (MD) simulations, the drug-likeness and binding affinity of these natural compounds against human pancreatic amylase was investigated. Out of the total 24,316 ZINC compounds screened for their binding scores with amylase, ZINC85593620, ZINC85593668, and ZINC85490447 came top. The compounds had higher binding scores than the standards (acarbose and ranirestat) with ZINC85593620 having the highest docking score of - 12.162 kcal/mol and interacted with key amino acid residues such as TRP 59, ILE 148, and ASP 197. Further validation through MD simulations reveals that all the compounds showed minimal fluctuations relative to the standards indicating strong and stable binding interactions suggesting potential effective inhibition of the enzyme. ZINC85593620 and ZINC85593668 showed promising distribution and availability characteristics for amylase inhibition. Overall, the compounds displayed potential amylase inhibition which underscores their use as promising natural products in developing new antidiabetic drugs. Further experimental validations are recommended to offer a potential solution to the pressing need for safer and more effective antidiabetic therapies.</p>\",\"PeriodicalId\":94038,\"journal\":{\"name\":\"In silico pharmacology\",\"volume\":\"13 1\",\"pages\":\"29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832966/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In silico pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-025-00320-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-025-00320-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表观遗传功能障碍已涉及疾病条件,如糖尿病突出了发现新的治疗方案的紧迫性。全球糖尿病发病率的上升和现有治疗方法的局限性进一步加剧了对新型抗糖尿病药物的探索。本研究利用计算方法筛选生物活性天然产物植物成分的潜在抗糖尿病特性。利用药物分析、ADMET(吸收、分布、代谢、排泄和毒性)预测、分子对接和分子动力学(MD)模拟,研究了这些天然化合物对人胰淀粉酶的药物相似性和结合亲和力。在与淀粉酶结合得分的24,316个锌化合物中,ZINC85593620、ZINC85593668和ZINC85490447名列前茅。这些化合物的结合分数高于标准化合物阿卡波糖和雷尼司他,其中ZINC85593620的结合分数最高,为- 12.162 kcal/mol,并与TRP 59、ILE 148和ASP 197等关键氨基酸残基相互作用。通过MD模拟进一步验证表明,所有化合物相对于标准表现出最小的波动,表明强而稳定的结合相互作用,表明潜在的有效抑制酶。ZINC85593620和ZINC85593668具有良好的淀粉酶抑制分布和有效性。总的来说,这些化合物显示出潜在的淀粉酶抑制作用,这强调了它们在开发新的抗糖尿病药物中作为有前途的天然产物的应用。建议进一步的实验验证,以提供一个潜在的解决方案,迫切需要更安全,更有效的降糖治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De novo in silico screening of natural products for antidiabetic drug discovery: ADMET profiling, molecular docking, and molecular dynamics simulations.

Epigenetic dysfunction which has implicated disease conditions such as diabetes highlights the urgency for the discovery of novel therapeutic alternatives. The rising global incidences of diabetes and the limitations of existing treatments further exacerbate the quest for novel antidiabetic agents' discovery. This study leverages computational approaches to screen selected bioactive natural product phytoconstituents for their potential anti-diabetic properties. Utilizing pharmaceutical profiling, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions, molecular docking, and molecular dynamics (MD) simulations, the drug-likeness and binding affinity of these natural compounds against human pancreatic amylase was investigated. Out of the total 24,316 ZINC compounds screened for their binding scores with amylase, ZINC85593620, ZINC85593668, and ZINC85490447 came top. The compounds had higher binding scores than the standards (acarbose and ranirestat) with ZINC85593620 having the highest docking score of - 12.162 kcal/mol and interacted with key amino acid residues such as TRP 59, ILE 148, and ASP 197. Further validation through MD simulations reveals that all the compounds showed minimal fluctuations relative to the standards indicating strong and stable binding interactions suggesting potential effective inhibition of the enzyme. ZINC85593620 and ZINC85593668 showed promising distribution and availability characteristics for amylase inhibition. Overall, the compounds displayed potential amylase inhibition which underscores their use as promising natural products in developing new antidiabetic drugs. Further experimental validations are recommended to offer a potential solution to the pressing need for safer and more effective antidiabetic therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信