Hajar Ahmadieh, Farnaz Ghassemi, Mohammad Hassan Moradi
{"title":"基于长短期记忆网络和非线性区间2型模糊回归的视觉对象脑电信号分类。","authors":"Hajar Ahmadieh, Farnaz Ghassemi, Mohammad Hassan Moradi","doi":"10.1007/s10548-024-01080-0","DOIUrl":null,"url":null,"abstract":"<p><p>By gaining insights into how brain activity is encoded and decoded, we enhance our understanding of brain function. This study introduces a method for classifying EEG signals related to visual objects, employing a combination of an LSTM network and nonlinear interval type-2 fuzzy regression (NIT2FR). Here, ResNet is utilized for feature extraction from images, the LSTM network for feature extraction from EEG signals, and NIT2FR for mapping image features to EEG signal features. The application of type-2 fuzzy logic addresses uncertainties arising from EEG signal nonlinearity, noise, limited data sample size, and diverse mental states among participants. The Stanford database was used for implementation, evaluating effectiveness through metrics like classification accuracy, precision, recall, and F1 score. According to the findings, the LSTM network achieved an accuracy of 55.83% in categorizing images using raw EEG data. When compared to other methods like linear type-2, linear/nonlinear type-1 fuzzy, neural network, and polynomial regression, NIT2FR coupled with an SVM classifier outperformed with a 68.05% accuracy. Thus, NIT2FR demonstrates superiority in handling high uncertainty environments. Moreover, the 6.03% improvement in accuracy over the best previous study using the same dataset underscores its effectiveness. Precision, recall, and F1 score results for NIT2FR were 68.93%, 68.08%, and 68.49% respectively, surpassing outcomes from linear type-2, linear/nonlinear type-1 fuzzy regression methods.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"20"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG Signals Classification Related to Visual Objects Using Long Short-Term Memory Network and Nonlinear Interval Type-2 Fuzzy Regression.\",\"authors\":\"Hajar Ahmadieh, Farnaz Ghassemi, Mohammad Hassan Moradi\",\"doi\":\"10.1007/s10548-024-01080-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By gaining insights into how brain activity is encoded and decoded, we enhance our understanding of brain function. This study introduces a method for classifying EEG signals related to visual objects, employing a combination of an LSTM network and nonlinear interval type-2 fuzzy regression (NIT2FR). Here, ResNet is utilized for feature extraction from images, the LSTM network for feature extraction from EEG signals, and NIT2FR for mapping image features to EEG signal features. The application of type-2 fuzzy logic addresses uncertainties arising from EEG signal nonlinearity, noise, limited data sample size, and diverse mental states among participants. The Stanford database was used for implementation, evaluating effectiveness through metrics like classification accuracy, precision, recall, and F1 score. According to the findings, the LSTM network achieved an accuracy of 55.83% in categorizing images using raw EEG data. When compared to other methods like linear type-2, linear/nonlinear type-1 fuzzy, neural network, and polynomial regression, NIT2FR coupled with an SVM classifier outperformed with a 68.05% accuracy. Thus, NIT2FR demonstrates superiority in handling high uncertainty environments. Moreover, the 6.03% improvement in accuracy over the best previous study using the same dataset underscores its effectiveness. Precision, recall, and F1 score results for NIT2FR were 68.93%, 68.08%, and 68.49% respectively, surpassing outcomes from linear type-2, linear/nonlinear type-1 fuzzy regression methods.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 2\",\"pages\":\"20\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-024-01080-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01080-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
EEG Signals Classification Related to Visual Objects Using Long Short-Term Memory Network and Nonlinear Interval Type-2 Fuzzy Regression.
By gaining insights into how brain activity is encoded and decoded, we enhance our understanding of brain function. This study introduces a method for classifying EEG signals related to visual objects, employing a combination of an LSTM network and nonlinear interval type-2 fuzzy regression (NIT2FR). Here, ResNet is utilized for feature extraction from images, the LSTM network for feature extraction from EEG signals, and NIT2FR for mapping image features to EEG signal features. The application of type-2 fuzzy logic addresses uncertainties arising from EEG signal nonlinearity, noise, limited data sample size, and diverse mental states among participants. The Stanford database was used for implementation, evaluating effectiveness through metrics like classification accuracy, precision, recall, and F1 score. According to the findings, the LSTM network achieved an accuracy of 55.83% in categorizing images using raw EEG data. When compared to other methods like linear type-2, linear/nonlinear type-1 fuzzy, neural network, and polynomial regression, NIT2FR coupled with an SVM classifier outperformed with a 68.05% accuracy. Thus, NIT2FR demonstrates superiority in handling high uncertainty environments. Moreover, the 6.03% improvement in accuracy over the best previous study using the same dataset underscores its effectiveness. Precision, recall, and F1 score results for NIT2FR were 68.93%, 68.08%, and 68.49% respectively, surpassing outcomes from linear type-2, linear/nonlinear type-1 fuzzy regression methods.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.