可替换基因组和片段复制驱动了茄枯菌基因组的可塑性。

IF 2.1 Q3 MYCOLOGY
Frontiers in fungal biology Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.3389/ffunb.2025.1432339
Abbeah Navasca, Jatinder Singh, Viviana Rivera-Varas, Upinder Gill, Gary Secor, Thomas Baldwin
{"title":"可替换基因组和片段复制驱动了茄枯菌基因组的可塑性。","authors":"Abbeah Navasca, Jatinder Singh, Viviana Rivera-Varas, Upinder Gill, Gary Secor, Thomas Baldwin","doi":"10.3389/ffunb.2025.1432339","DOIUrl":null,"url":null,"abstract":"<p><p><i>Fusarium solani</i> is a species complex encompassing a large phylogenetic clade with diverse members occupying varied habitats. We recently reported a unique opportunistic <i>F. solani</i> associated with unusual dark galls in sugarbeet. We assembled the chromosome-level genome of the <i>F. solani</i> sugarbeet isolate strain SB1 using Oxford Nanopore and Hi-C sequencing. The average size of <i>F. solani</i> genomes is 54 Mb, whereas SB1 has a larger genome of 59.38 Mb, organized into 15 chromosomes. The genome expansion of strain SB1 is due to the high repeats and segmental duplications within its three potentially accessory chromosomes. These chromosomes are absent in the closest reference genome with chromosome-level assembly, <i>F. vanettenii</i> 77-13-4. Segmental duplications were found in three chromosomes but are most extensive between two specific SB1 chromosomes, suggesting that this isolate may have doubled its accessory genes. Further comparison of the <i>F. solani</i> strain SB1 genome demonstrates inversions and syntenic regions to an accessory chromosome of <i>F. vanettenii</i> 77-13-4. The pan-genome of 12 publicly available <i>F. solani</i> isolates nearly reached gene saturation, with few new genes discovered after the addition of the last genome. Based on orthogroups and average nucleotide identity, <i>F. solani</i> is not grouped by lifestyle or origin. The pan-genome analysis further revealed the enrichment of several enzymes-coding genes within the dispensable (accessory + unique genes) genome, such as hydrolases, transferases, oxidoreductases, lyases, ligases, isomerase, and dehydrogenase. The evidence presented here suggests that genome plasticity, genetic diversity, and adaptive traits in <i>Fusarium solani</i> are driven by the dispensable genome with significant contributions from segmental duplications.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"6 ","pages":"1432339"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835900/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dispensable genome and segmental duplications drive the genome plasticity in <i>Fusarium solani</i>.\",\"authors\":\"Abbeah Navasca, Jatinder Singh, Viviana Rivera-Varas, Upinder Gill, Gary Secor, Thomas Baldwin\",\"doi\":\"10.3389/ffunb.2025.1432339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Fusarium solani</i> is a species complex encompassing a large phylogenetic clade with diverse members occupying varied habitats. We recently reported a unique opportunistic <i>F. solani</i> associated with unusual dark galls in sugarbeet. We assembled the chromosome-level genome of the <i>F. solani</i> sugarbeet isolate strain SB1 using Oxford Nanopore and Hi-C sequencing. The average size of <i>F. solani</i> genomes is 54 Mb, whereas SB1 has a larger genome of 59.38 Mb, organized into 15 chromosomes. The genome expansion of strain SB1 is due to the high repeats and segmental duplications within its three potentially accessory chromosomes. These chromosomes are absent in the closest reference genome with chromosome-level assembly, <i>F. vanettenii</i> 77-13-4. Segmental duplications were found in three chromosomes but are most extensive between two specific SB1 chromosomes, suggesting that this isolate may have doubled its accessory genes. Further comparison of the <i>F. solani</i> strain SB1 genome demonstrates inversions and syntenic regions to an accessory chromosome of <i>F. vanettenii</i> 77-13-4. The pan-genome of 12 publicly available <i>F. solani</i> isolates nearly reached gene saturation, with few new genes discovered after the addition of the last genome. Based on orthogroups and average nucleotide identity, <i>F. solani</i> is not grouped by lifestyle or origin. The pan-genome analysis further revealed the enrichment of several enzymes-coding genes within the dispensable (accessory + unique genes) genome, such as hydrolases, transferases, oxidoreductases, lyases, ligases, isomerase, and dehydrogenase. The evidence presented here suggests that genome plasticity, genetic diversity, and adaptive traits in <i>Fusarium solani</i> are driven by the dispensable genome with significant contributions from segmental duplications.</p>\",\"PeriodicalId\":73084,\"journal\":{\"name\":\"Frontiers in fungal biology\",\"volume\":\"6 \",\"pages\":\"1432339\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835900/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in fungal biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ffunb.2025.1432339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2025.1432339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

镰刀菌是一个复杂的物种,包含了一个大的系统发育分支,不同的成员占据不同的栖息地。我们最近报道了一种独特的机会性茄蚜,与甜菜中不寻常的深色瘿有关。我们使用Oxford Nanopore和Hi-C测序技术组装了茄酸甜菜分离菌株SB1的染色体水平基因组。茄属真菌基因组的平均大小为54 Mb,而SB1的基因组更大,为59.38 Mb,由15条染色体组成。菌株SB1的基因组扩增是由于其三个潜在的辅助染色体内的高重复和片段重复。这些染色体在最近的具有染色体水平组装的参考基因组F. vanettenii 77-13-4中不存在。在三条染色体中发现了片段重复,但在两条特定的SB1染色体之间最为广泛,这表明该分离物可能将其附属基因加倍。进一步比较茄茄F. solani菌株SB1基因组,发现与F. vanettenii 77-13-4的副染色体有倒位和共链区域。公开获得的12株梭兰氏菌的泛基因组几乎达到了基因饱和,在加入最后一个基因组后几乎没有发现新的基因。基于正系群和平均核苷酸的同一性,茄属真菌不按生活方式或起源分组。泛基因组分析进一步揭示了在可有可无(辅助+独特基因)的基因组中富集了一些酶编码基因,如水解酶、转移酶、氧化还原酶、裂解酶、连接酶、异构酶和脱氢酶。本研究的证据表明,镰刀菌的基因组可塑性、遗传多样性和适应性性状是由可替换的基因组驱动的,而片段复制对其有重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispensable genome and segmental duplications drive the genome plasticity in Fusarium solani.

Fusarium solani is a species complex encompassing a large phylogenetic clade with diverse members occupying varied habitats. We recently reported a unique opportunistic F. solani associated with unusual dark galls in sugarbeet. We assembled the chromosome-level genome of the F. solani sugarbeet isolate strain SB1 using Oxford Nanopore and Hi-C sequencing. The average size of F. solani genomes is 54 Mb, whereas SB1 has a larger genome of 59.38 Mb, organized into 15 chromosomes. The genome expansion of strain SB1 is due to the high repeats and segmental duplications within its three potentially accessory chromosomes. These chromosomes are absent in the closest reference genome with chromosome-level assembly, F. vanettenii 77-13-4. Segmental duplications were found in three chromosomes but are most extensive between two specific SB1 chromosomes, suggesting that this isolate may have doubled its accessory genes. Further comparison of the F. solani strain SB1 genome demonstrates inversions and syntenic regions to an accessory chromosome of F. vanettenii 77-13-4. The pan-genome of 12 publicly available F. solani isolates nearly reached gene saturation, with few new genes discovered after the addition of the last genome. Based on orthogroups and average nucleotide identity, F. solani is not grouped by lifestyle or origin. The pan-genome analysis further revealed the enrichment of several enzymes-coding genes within the dispensable (accessory + unique genes) genome, such as hydrolases, transferases, oxidoreductases, lyases, ligases, isomerase, and dehydrogenase. The evidence presented here suggests that genome plasticity, genetic diversity, and adaptive traits in Fusarium solani are driven by the dispensable genome with significant contributions from segmental duplications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信