Anna S Bodrova, Aleksei V Chechkin, Awadhesh Kumar Dubey
{"title":"重设中的颗粒气体。","authors":"Anna S Bodrova, Aleksei V Chechkin, Awadhesh Kumar Dubey","doi":"10.1103/PhysRevE.111.015405","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the granular temperatures in force-free granular gases under exponential resetting. When a resetting event occurs, the granular temperature attains its initial value, whereas it decreases because of the inelastic collisions between the resetting events. We develop a theory and perform computer simulations for granular gas cooling in the presence of Poissonian resetting events. We also investigate the probability density function to quantify the distribution of granular temperatures. Our theory may help us to understand the behavior of nonperiodically driven granular systems.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-2","pages":"015405"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Granular gases under resetting.\",\"authors\":\"Anna S Bodrova, Aleksei V Chechkin, Awadhesh Kumar Dubey\",\"doi\":\"10.1103/PhysRevE.111.015405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the granular temperatures in force-free granular gases under exponential resetting. When a resetting event occurs, the granular temperature attains its initial value, whereas it decreases because of the inelastic collisions between the resetting events. We develop a theory and perform computer simulations for granular gas cooling in the presence of Poissonian resetting events. We also investigate the probability density function to quantify the distribution of granular temperatures. Our theory may help us to understand the behavior of nonperiodically driven granular systems.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"111 1-2\",\"pages\":\"015405\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.015405\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.015405","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
We investigate the granular temperatures in force-free granular gases under exponential resetting. When a resetting event occurs, the granular temperature attains its initial value, whereas it decreases because of the inelastic collisions between the resetting events. We develop a theory and perform computer simulations for granular gas cooling in the presence of Poissonian resetting events. We also investigate the probability density function to quantify the distribution of granular temperatures. Our theory may help us to understand the behavior of nonperiodically driven granular systems.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.