方形软洛伦兹气体中的反常扩散。

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Esko Toivonen, Joni Kaipainen, Matti Molkkari, Joonas Keski-Rahkonen, Rainer Klages, Esa Räsänen
{"title":"方形软洛伦兹气体中的反常扩散。","authors":"Esko Toivonen, Joni Kaipainen, Matti Molkkari, Joonas Keski-Rahkonen, Rainer Klages, Esa Räsänen","doi":"10.1103/PhysRevE.111.014216","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate and analyze anomalous diffusion properties of point-like particles in a two-dimensional system with circular scatterers arranged in a square lattice and governed by smooth potentials, referred to as the square soft Lorentz gas. Our numerical simulations reveal a rich interplay of normal and anomalous diffusion depending on the system parameters. To describe diffusion in normal regimes, we develop a unit cell hopping model that, in the single-hop limit, recovers the Machta-Zwanzig approximation and converges toward the numerical diffusion coefficient as the number of hops increases. Anomalous diffusion is characterized by quasiballistic orbits forming Kolmogorov-Arnold-Moser islands in phase space, alongside a complex tongue structure in parameter space defined by the interscatterer distance and potential softness. The distributions of the particle displacement vector show notable similarities to both analytical and numerical results for a hard-wall square Lorentz gas, exhibiting Gaussian behavior in normal diffusion and long tails due to quasiballistic orbits in anomalous regimes. Our work thus provides a catalog of key dynamical system properties that characterize the intricate changes in diffusion when transitioning from hard billiards to soft potentials.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1-1","pages":"014216"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous diffusion in the square soft Lorentz gas.\",\"authors\":\"Esko Toivonen, Joni Kaipainen, Matti Molkkari, Joonas Keski-Rahkonen, Rainer Klages, Esa Räsänen\",\"doi\":\"10.1103/PhysRevE.111.014216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We demonstrate and analyze anomalous diffusion properties of point-like particles in a two-dimensional system with circular scatterers arranged in a square lattice and governed by smooth potentials, referred to as the square soft Lorentz gas. Our numerical simulations reveal a rich interplay of normal and anomalous diffusion depending on the system parameters. To describe diffusion in normal regimes, we develop a unit cell hopping model that, in the single-hop limit, recovers the Machta-Zwanzig approximation and converges toward the numerical diffusion coefficient as the number of hops increases. Anomalous diffusion is characterized by quasiballistic orbits forming Kolmogorov-Arnold-Moser islands in phase space, alongside a complex tongue structure in parameter space defined by the interscatterer distance and potential softness. The distributions of the particle displacement vector show notable similarities to both analytical and numerical results for a hard-wall square Lorentz gas, exhibiting Gaussian behavior in normal diffusion and long tails due to quasiballistic orbits in anomalous regimes. Our work thus provides a catalog of key dynamical system properties that characterize the intricate changes in diffusion when transitioning from hard billiards to soft potentials.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"111 1-1\",\"pages\":\"014216\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.014216\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.014216","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们证明并分析了二维系统中点状粒子的异常扩散特性,该系统中圆形散射体排列在方形晶格中,并由光滑势控制,称为方形软洛伦兹气体。我们的数值模拟揭示了依赖于系统参数的正常和异常扩散的丰富相互作用。为了描述正常情况下的扩散,我们建立了一个单位胞跳变模型,该模型在单跳极限下恢复了Machta-Zwanzig近似,并随着跳数的增加收敛于数值扩散系数。反常扩散的特征是准准轨道在相空间中形成Kolmogorov-Arnold-Moser岛,在参数空间中形成复杂的舌状结构,由散射体间距离和势柔软度定义。粒子位移矢量的分布与硬壁方形洛伦兹气体的解析和数值结果都有显著的相似之处,在正常扩散中表现为高斯行为,而在异常状态下表现为准弹道轨道引起的长尾。因此,我们的工作提供了一个关键动力系统特性的目录,这些特性表征了从硬台球向软势过渡时扩散的复杂变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomalous diffusion in the square soft Lorentz gas.

We demonstrate and analyze anomalous diffusion properties of point-like particles in a two-dimensional system with circular scatterers arranged in a square lattice and governed by smooth potentials, referred to as the square soft Lorentz gas. Our numerical simulations reveal a rich interplay of normal and anomalous diffusion depending on the system parameters. To describe diffusion in normal regimes, we develop a unit cell hopping model that, in the single-hop limit, recovers the Machta-Zwanzig approximation and converges toward the numerical diffusion coefficient as the number of hops increases. Anomalous diffusion is characterized by quasiballistic orbits forming Kolmogorov-Arnold-Moser islands in phase space, alongside a complex tongue structure in parameter space defined by the interscatterer distance and potential softness. The distributions of the particle displacement vector show notable similarities to both analytical and numerical results for a hard-wall square Lorentz gas, exhibiting Gaussian behavior in normal diffusion and long tails due to quasiballistic orbits in anomalous regimes. Our work thus provides a catalog of key dynamical system properties that characterize the intricate changes in diffusion when transitioning from hard billiards to soft potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信