实空间凝聚的Yang-Lee零。

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Zdzislaw Burda, Desmond A Johnston, Mario Kieburg
{"title":"实空间凝聚的Yang-Lee零。","authors":"Zdzislaw Burda, Desmond A Johnston, Mario Kieburg","doi":"10.1103/PhysRevE.111.L012101","DOIUrl":null,"url":null,"abstract":"<p><p>Using the electrostatic analogy, we derive an exact formula for the limiting Yang-Lee zero distribution in the random allocation model of general weights. This exhibits a real-space condensation phase transition, which is induced by a pressure change. The exact solution allows one to read off the scaling of the density of zeros at the critical point and the angle at which the locus of zeros hits the critical point. Since the order of the phase transition and critical exponents can be tuned with a single parameter for several families of weights, the model provides a useful testing ground for verifying various relations between the distribution of zeros and the critical behavior, as well as for exploring the behavior of physical quantities in the mesoscopic regime, i.e., systems of large but finite size. The main result is that asymptotically the Yang-Lee zeros are images of a conformal mapping, given by the generating function for the weights, of uniformly distributed complex phases.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"111 1","pages":"L012101"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yang-Lee zeros for real-space condensation.\",\"authors\":\"Zdzislaw Burda, Desmond A Johnston, Mario Kieburg\",\"doi\":\"10.1103/PhysRevE.111.L012101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using the electrostatic analogy, we derive an exact formula for the limiting Yang-Lee zero distribution in the random allocation model of general weights. This exhibits a real-space condensation phase transition, which is induced by a pressure change. The exact solution allows one to read off the scaling of the density of zeros at the critical point and the angle at which the locus of zeros hits the critical point. Since the order of the phase transition and critical exponents can be tuned with a single parameter for several families of weights, the model provides a useful testing ground for verifying various relations between the distribution of zeros and the critical behavior, as well as for exploring the behavior of physical quantities in the mesoscopic regime, i.e., systems of large but finite size. The main result is that asymptotically the Yang-Lee zeros are images of a conformal mapping, given by the generating function for the weights, of uniformly distributed complex phases.</p>\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"111 1\",\"pages\":\"L012101\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.111.L012101\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L012101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

利用静电类比,导出了一般权值随机分配模型中极限Yang-Lee零分布的精确公式。这表现出由压力变化引起的实空间冷凝相变。精确解允许我们读出临界点处零点密度的比例以及零点轨迹到达临界点时的角度。由于相变和临界指数的顺序可以用几个权重族的单个参数进行调整,因此该模型为验证零分布与临界行为之间的各种关系以及探索介观体系中物理量的行为提供了有用的试验场,即大但有限的系统。主要结果是,渐近地,Yang-Lee零是由权值的生成函数给出的均匀分布复相的共形映射的像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yang-Lee zeros for real-space condensation.

Using the electrostatic analogy, we derive an exact formula for the limiting Yang-Lee zero distribution in the random allocation model of general weights. This exhibits a real-space condensation phase transition, which is induced by a pressure change. The exact solution allows one to read off the scaling of the density of zeros at the critical point and the angle at which the locus of zeros hits the critical point. Since the order of the phase transition and critical exponents can be tuned with a single parameter for several families of weights, the model provides a useful testing ground for verifying various relations between the distribution of zeros and the critical behavior, as well as for exploring the behavior of physical quantities in the mesoscopic regime, i.e., systems of large but finite size. The main result is that asymptotically the Yang-Lee zeros are images of a conformal mapping, given by the generating function for the weights, of uniformly distributed complex phases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信