带耗散的非马尔可夫动力学下的时间分数阶Schrödinger方程。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Chuanjin Zu, Xiangyang Yu
{"title":"带耗散的非马尔可夫动力学下的时间分数阶Schrödinger方程。","authors":"Chuanjin Zu, Xiangyang Yu","doi":"10.1063/5.0253816","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we examine the time-fractional Schrödinger equation from the perspective of non-Markovian dynamics in dissipative systems. First, we determine the range of the fractional derivative's order by examining the memory properties of the time-fractional Schrödinger equation. Next, we employ the Jaynes-Cummings model to identify the appropriate mathematical form of the imaginary unit. Finally, we use the refined equation to study quantum teleportation under amplitude damping noise. It was found that the time-fractional Schrödinger equation without fractional operations on the imaginary unit i might be more suitable for describing non-Markovian dynamics in dissipative systems. Our research may provide a new perspective on the time-fractional Schrödinger equation, contributing to a deeper understanding and further development of time-fractional quantum mechanics.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 7","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The time-fractional Schrödinger equation in the context of non-Markovian dynamics with dissipation.\",\"authors\":\"Chuanjin Zu, Xiangyang Yu\",\"doi\":\"10.1063/5.0253816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we examine the time-fractional Schrödinger equation from the perspective of non-Markovian dynamics in dissipative systems. First, we determine the range of the fractional derivative's order by examining the memory properties of the time-fractional Schrödinger equation. Next, we employ the Jaynes-Cummings model to identify the appropriate mathematical form of the imaginary unit. Finally, we use the refined equation to study quantum teleportation under amplitude damping noise. It was found that the time-fractional Schrödinger equation without fractional operations on the imaginary unit i might be more suitable for describing non-Markovian dynamics in dissipative systems. Our research may provide a new perspective on the time-fractional Schrödinger equation, contributing to a deeper understanding and further development of time-fractional quantum mechanics.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 7\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0253816\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0253816","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文从耗散系统的非马尔可夫动力学角度研究了时间分数阶Schrödinger方程。首先,我们通过检查时间分数阶Schrödinger方程的记忆特性来确定分数阶导数的阶数范围。接下来,我们采用詹尼斯-卡明斯模型来确定虚单位的适当数学形式。最后,我们利用改进方程研究了振幅阻尼噪声下的量子隐形传态。发现在虚单元i上不加分数运算的时间分数阶Schrödinger方程更适合描述耗散系统中的非马尔可夫动力学。我们的研究可能为时间分数阶Schrödinger方程提供一个新的视角,有助于对时间分数阶量子力学的更深入的理解和进一步的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The time-fractional Schrödinger equation in the context of non-Markovian dynamics with dissipation.

In this paper, we examine the time-fractional Schrödinger equation from the perspective of non-Markovian dynamics in dissipative systems. First, we determine the range of the fractional derivative's order by examining the memory properties of the time-fractional Schrödinger equation. Next, we employ the Jaynes-Cummings model to identify the appropriate mathematical form of the imaginary unit. Finally, we use the refined equation to study quantum teleportation under amplitude damping noise. It was found that the time-fractional Schrödinger equation without fractional operations on the imaginary unit i might be more suitable for describing non-Markovian dynamics in dissipative systems. Our research may provide a new perspective on the time-fractional Schrödinger equation, contributing to a deeper understanding and further development of time-fractional quantum mechanics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信