Jeremy O Richardson, Joseph E Lawrence, Jonathan R Mannouch
{"title":"非绝热动力学与表面跳跃(MASH)的映射方法。","authors":"Jeremy O Richardson, Joseph E Lawrence, Jonathan R Mannouch","doi":"10.1146/annurev-physchem-082423-120631","DOIUrl":null,"url":null,"abstract":"<p><p>The mapping approach to surface hopping (MASH) combines the rigor of quasiclassical mapping approaches with the pragmatism of surface hopping to obtain a practical trajectory-based method for simulating nonadiabatic dynamics in molecular systems. In this review, we outline the derivation of MASH, prove a number of important properties that ensure its reliability, and illustrate its accuracy for computing nonadiabatic rate constants as well as ultrafast photochemical dynamics.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonadiabatic Dynamics with the Mapping Approach to Surface Hopping (MASH).\",\"authors\":\"Jeremy O Richardson, Joseph E Lawrence, Jonathan R Mannouch\",\"doi\":\"10.1146/annurev-physchem-082423-120631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mapping approach to surface hopping (MASH) combines the rigor of quasiclassical mapping approaches with the pragmatism of surface hopping to obtain a practical trajectory-based method for simulating nonadiabatic dynamics in molecular systems. In this review, we outline the derivation of MASH, prove a number of important properties that ensure its reliability, and illustrate its accuracy for computing nonadiabatic rate constants as well as ultrafast photochemical dynamics.</p>\",\"PeriodicalId\":7967,\"journal\":{\"name\":\"Annual review of physical chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of physical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-physchem-082423-120631\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-physchem-082423-120631","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Nonadiabatic Dynamics with the Mapping Approach to Surface Hopping (MASH).
The mapping approach to surface hopping (MASH) combines the rigor of quasiclassical mapping approaches with the pragmatism of surface hopping to obtain a practical trajectory-based method for simulating nonadiabatic dynamics in molecular systems. In this review, we outline the derivation of MASH, prove a number of important properties that ensure its reliability, and illustrate its accuracy for computing nonadiabatic rate constants as well as ultrafast photochemical dynamics.
期刊介绍:
The Annual Review of Physical Chemistry has been published since 1950 and is a comprehensive resource for significant advancements in the field. It encompasses various sub-disciplines such as biophysical chemistry, chemical kinetics, colloids, electrochemistry, geochemistry and cosmochemistry, chemistry of the atmosphere and climate, laser chemistry and ultrafast processes, the liquid state, magnetic resonance, physical organic chemistry, polymers and macromolecules, and others.