Hui Xu, Qian Zhang, Jie Yuan, Jianfeng Xu, Jian Sui, Jia Liu
{"title":"新辅助治疗后肿瘤区域的综合MALDI质谱成像。","authors":"Hui Xu, Qian Zhang, Jie Yuan, Jianfeng Xu, Jian Sui, Jia Liu","doi":"10.1007/s00216-025-05785-4","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial metabolic analysis of tumor tissues following neoadjuvant chemotherapy (NAC) is critical for understanding chemotherapy-induced metabolic changes. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) offers a powerful tool for revealing spatially resolved metabolic profiles within tissues. However, necrotic regions in post-NAC tissues are fragile, creating challenges for sample preparation and MALDI MSI analysis. In this study, we introduce an optimized workflow employing conductive tape to stabilize tissue samples during sectioning and MALDI MSI analysis, preserving necrotic areas while maintaining tissue integrity. Using this technique, we successfully mapped metabolic alterations across necrotic and viable regions of post-NAC tumor tissues, providing new insights into metabolic changes that occur after chemotherapy. Our findings establish MALDI MSI as a valuable tool for spatially resolved metabolomics in post-NAC tumor tissues, offering insights into chemotherapy-induced metabolic changes.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"2039-2046"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive MALDI mass spectrometry imaging of tumor regions post-neoadjuvant therapy.\",\"authors\":\"Hui Xu, Qian Zhang, Jie Yuan, Jianfeng Xu, Jian Sui, Jia Liu\",\"doi\":\"10.1007/s00216-025-05785-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spatial metabolic analysis of tumor tissues following neoadjuvant chemotherapy (NAC) is critical for understanding chemotherapy-induced metabolic changes. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) offers a powerful tool for revealing spatially resolved metabolic profiles within tissues. However, necrotic regions in post-NAC tissues are fragile, creating challenges for sample preparation and MALDI MSI analysis. In this study, we introduce an optimized workflow employing conductive tape to stabilize tissue samples during sectioning and MALDI MSI analysis, preserving necrotic areas while maintaining tissue integrity. Using this technique, we successfully mapped metabolic alterations across necrotic and viable regions of post-NAC tumor tissues, providing new insights into metabolic changes that occur after chemotherapy. Our findings establish MALDI MSI as a valuable tool for spatially resolved metabolomics in post-NAC tumor tissues, offering insights into chemotherapy-induced metabolic changes.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"2039-2046\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-025-05785-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05785-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Comprehensive MALDI mass spectrometry imaging of tumor regions post-neoadjuvant therapy.
The spatial metabolic analysis of tumor tissues following neoadjuvant chemotherapy (NAC) is critical for understanding chemotherapy-induced metabolic changes. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) offers a powerful tool for revealing spatially resolved metabolic profiles within tissues. However, necrotic regions in post-NAC tissues are fragile, creating challenges for sample preparation and MALDI MSI analysis. In this study, we introduce an optimized workflow employing conductive tape to stabilize tissue samples during sectioning and MALDI MSI analysis, preserving necrotic areas while maintaining tissue integrity. Using this technique, we successfully mapped metabolic alterations across necrotic and viable regions of post-NAC tumor tissues, providing new insights into metabolic changes that occur after chemotherapy. Our findings establish MALDI MSI as a valuable tool for spatially resolved metabolomics in post-NAC tumor tissues, offering insights into chemotherapy-induced metabolic changes.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.