{"title":"在固态纳米通道中裁剪聚合物涂层和接枝结构的光开关离子传输。","authors":"Yi-Fan Chen, Vaishali Pruthi, Yu-Chun Liu, Cheng-Yeh Yang, Lin-Ruei Lee, Ming-Hsuan Chang, Chun-Chi Chang, Patrick Théato, Jiun-Tai Chen","doi":"10.1002/asia.202401684","DOIUrl":null,"url":null,"abstract":"<p>Photoresponsive ion nanochannels have gained significant attention for their ability to regulate ionic transport in response to external stimuli. The potential of molecular and polymeric architectures in the nanochannels to further enhance and modulate these behaviors, however, remains underexplored. In this work, we explore the integration of spiropyran-based polymers into anodic aluminum oxide (AAO) nanochannels, resulting in tailored photoresponsive behaviors. Spiropyran undergoes reversible ring-opening isomerization upon UV irradiation, which leads to changes in the packing and polarity of polymer chains within the nanochannels. The polySp-coated and polySp-grafted AAO systems, fabricated via solution wetting and surface-initiated atom transfer radical polymerization (SI-ATRP), exhibit unique macroscopic and microscopic responses, including reversible color changes, wettability adjustments, and modulation of ion transport under UV and visible light. These findings demonstrate the potential of spiropyran-functionalized nanochannels for applications in optical information storage, photogated materials, and sensors. By manipulating molecular architecture and nanoconfinement, this work paves the way for the design of next-generation photoswitchable systems with enhanced multifunctionality.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":"20 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asia.202401684","citationCount":"0","resultStr":"{\"title\":\"Tailoring Polymer Coatings and Grafting Structures for Photoswitchable Ionic Transport in Solid-State Nanochannels\",\"authors\":\"Yi-Fan Chen, Vaishali Pruthi, Yu-Chun Liu, Cheng-Yeh Yang, Lin-Ruei Lee, Ming-Hsuan Chang, Chun-Chi Chang, Patrick Théato, Jiun-Tai Chen\",\"doi\":\"10.1002/asia.202401684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photoresponsive ion nanochannels have gained significant attention for their ability to regulate ionic transport in response to external stimuli. The potential of molecular and polymeric architectures in the nanochannels to further enhance and modulate these behaviors, however, remains underexplored. In this work, we explore the integration of spiropyran-based polymers into anodic aluminum oxide (AAO) nanochannels, resulting in tailored photoresponsive behaviors. Spiropyran undergoes reversible ring-opening isomerization upon UV irradiation, which leads to changes in the packing and polarity of polymer chains within the nanochannels. The polySp-coated and polySp-grafted AAO systems, fabricated via solution wetting and surface-initiated atom transfer radical polymerization (SI-ATRP), exhibit unique macroscopic and microscopic responses, including reversible color changes, wettability adjustments, and modulation of ion transport under UV and visible light. These findings demonstrate the potential of spiropyran-functionalized nanochannels for applications in optical information storage, photogated materials, and sensors. By manipulating molecular architecture and nanoconfinement, this work paves the way for the design of next-generation photoswitchable systems with enhanced multifunctionality.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\"20 7\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asia.202401684\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://aces.onlinelibrary.wiley.com/doi/10.1002/asia.202401684\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://aces.onlinelibrary.wiley.com/doi/10.1002/asia.202401684","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailoring Polymer Coatings and Grafting Structures for Photoswitchable Ionic Transport in Solid-State Nanochannels
Photoresponsive ion nanochannels have gained significant attention for their ability to regulate ionic transport in response to external stimuli. The potential of molecular and polymeric architectures in the nanochannels to further enhance and modulate these behaviors, however, remains underexplored. In this work, we explore the integration of spiropyran-based polymers into anodic aluminum oxide (AAO) nanochannels, resulting in tailored photoresponsive behaviors. Spiropyran undergoes reversible ring-opening isomerization upon UV irradiation, which leads to changes in the packing and polarity of polymer chains within the nanochannels. The polySp-coated and polySp-grafted AAO systems, fabricated via solution wetting and surface-initiated atom transfer radical polymerization (SI-ATRP), exhibit unique macroscopic and microscopic responses, including reversible color changes, wettability adjustments, and modulation of ion transport under UV and visible light. These findings demonstrate the potential of spiropyran-functionalized nanochannels for applications in optical information storage, photogated materials, and sensors. By manipulating molecular architecture and nanoconfinement, this work paves the way for the design of next-generation photoswitchable systems with enhanced multifunctionality.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).