{"title":"平行支架复合修复主动脉弓夹层后马凡氏综合征患者的长期纵向计算研究","authors":"Yu Liu, Wenfan Li, Zhihao Ding, Zichun Tang, Yuanming Luo, Jia Hu","doi":"10.1002/cnm.70018","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Hybrid repair is a valuable alternative treatment for aortic arch disease in Marfan syndrome patients after proximal aorta replacement. This study aimed to investigate the long-term durability of this technique with the use of parallel stent-grafts and evaluate strategies to prevent abdominal aortic dilation. One Marfan syndrome patient who underwent hybrid aortic repair with parallel stent-grafts for arch dissection after the Bentall procedure was admitted. Five patient-specific three-dimensional models were reconstructed based on preoperative and follow-up computed tomography angiography scans. Three hypothetical models addressing the closure of an endoleak or reentry tears were created. Hemodynamic parameters were assessed using computational fluid dynamics. Postoperatively, increased blood flow into the descending aorta and rising abdominal aortic pressure were observed. During the 5-year follow-up, no new thoracic aorta-related adverse events occurred. One early type III endoleak persisted, and three reentry tears were identified in the descending aorta. The abdominal aorta dilated from 31 to 49 mm. Simultaneously addressing both the endoleak and reentry tears was more effective in reducing false lumen pressure and flow velocity in the abdominal aorta and expanding the high-value relative residence time region. Longitudinal follow-up imaging demonstrated the long-term durability of hybrid aortic arch repair with parallel stent-grafts in a Marfan syndrome patient after ascending aorta replacement. The increased pressure resulting from blood flow redistribution was associated with downstream aortic dilation. Furthermore, computational fluid dynamics simulations can offer predictive analyses for optimizing intervention strategies in the treatment of distal aneurysmal degeneration.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term Longitudinal Computational Study of a Marfan Syndrome Patient After Hybrid Repair of Aortic Arch Dissection With Parallel Stent-Grafts\",\"authors\":\"Yu Liu, Wenfan Li, Zhihao Ding, Zichun Tang, Yuanming Luo, Jia Hu\",\"doi\":\"10.1002/cnm.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Hybrid repair is a valuable alternative treatment for aortic arch disease in Marfan syndrome patients after proximal aorta replacement. This study aimed to investigate the long-term durability of this technique with the use of parallel stent-grafts and evaluate strategies to prevent abdominal aortic dilation. One Marfan syndrome patient who underwent hybrid aortic repair with parallel stent-grafts for arch dissection after the Bentall procedure was admitted. Five patient-specific three-dimensional models were reconstructed based on preoperative and follow-up computed tomography angiography scans. Three hypothetical models addressing the closure of an endoleak or reentry tears were created. Hemodynamic parameters were assessed using computational fluid dynamics. Postoperatively, increased blood flow into the descending aorta and rising abdominal aortic pressure were observed. During the 5-year follow-up, no new thoracic aorta-related adverse events occurred. One early type III endoleak persisted, and three reentry tears were identified in the descending aorta. The abdominal aorta dilated from 31 to 49 mm. Simultaneously addressing both the endoleak and reentry tears was more effective in reducing false lumen pressure and flow velocity in the abdominal aorta and expanding the high-value relative residence time region. Longitudinal follow-up imaging demonstrated the long-term durability of hybrid aortic arch repair with parallel stent-grafts in a Marfan syndrome patient after ascending aorta replacement. The increased pressure resulting from blood flow redistribution was associated with downstream aortic dilation. Furthermore, computational fluid dynamics simulations can offer predictive analyses for optimizing intervention strategies in the treatment of distal aneurysmal degeneration.</p>\\n </div>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70018\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Long-Term Longitudinal Computational Study of a Marfan Syndrome Patient After Hybrid Repair of Aortic Arch Dissection With Parallel Stent-Grafts
Hybrid repair is a valuable alternative treatment for aortic arch disease in Marfan syndrome patients after proximal aorta replacement. This study aimed to investigate the long-term durability of this technique with the use of parallel stent-grafts and evaluate strategies to prevent abdominal aortic dilation. One Marfan syndrome patient who underwent hybrid aortic repair with parallel stent-grafts for arch dissection after the Bentall procedure was admitted. Five patient-specific three-dimensional models were reconstructed based on preoperative and follow-up computed tomography angiography scans. Three hypothetical models addressing the closure of an endoleak or reentry tears were created. Hemodynamic parameters were assessed using computational fluid dynamics. Postoperatively, increased blood flow into the descending aorta and rising abdominal aortic pressure were observed. During the 5-year follow-up, no new thoracic aorta-related adverse events occurred. One early type III endoleak persisted, and three reentry tears were identified in the descending aorta. The abdominal aorta dilated from 31 to 49 mm. Simultaneously addressing both the endoleak and reentry tears was more effective in reducing false lumen pressure and flow velocity in the abdominal aorta and expanding the high-value relative residence time region. Longitudinal follow-up imaging demonstrated the long-term durability of hybrid aortic arch repair with parallel stent-grafts in a Marfan syndrome patient after ascending aorta replacement. The increased pressure resulting from blood flow redistribution was associated with downstream aortic dilation. Furthermore, computational fluid dynamics simulations can offer predictive analyses for optimizing intervention strategies in the treatment of distal aneurysmal degeneration.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.