光电器件用氧化铜/二氧化钛增强聚合物纳米复合材料的合成与表征

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
H. M. Ragab, N. S. Diab, Azza M. Khaled, Shimaa Mohammed Aboelnaga, S. A. Al-Balawi, A. Al Ojeery, M. O. Farea
{"title":"光电器件用氧化铜/二氧化钛增强聚合物纳米复合材料的合成与表征","authors":"H. M. Ragab,&nbsp;N. S. Diab,&nbsp;Azza M. Khaled,&nbsp;Shimaa Mohammed Aboelnaga,&nbsp;S. A. Al-Balawi,&nbsp;A. Al Ojeery,&nbsp;M. O. Farea","doi":"10.1007/s10854-025-14414-w","DOIUrl":null,"url":null,"abstract":"<div><p>Copper oxide/titanium dioxide nanoparticles (CuO/TiO<sub>2</sub> NP) were synthesized by precipitation. The polymer nanocomposites (PNCs) were prepared using the casting technique, incorporating Hydroxypropyl methylcellulose (HPMC) and polyethylene oxide (PEO) with varying concentrations of CuO/TiO<sub>2</sub> nanoparticles: 2, 4, and 8 wt%. X-ray diffraction (XRD) analysis demonstrated a reduction in the crystallinity of the PNCs, highlighting changes in their microcrystalline properties. FT-IR spectroscopy confirmed the successful formation of the nanocomposites and identified the functional groups present. The optical properties were examined with a UV–Vis spectrophotometer, and each film’s absorbance coefficient was calculated. Incorporating 8% CuO/TiO<sub>2</sub> into the HPMC/PEO matrix reduced the bandgap energies (<i>E</i><sub>gd</sub> and <i>E</i><sub>gin</sub>) of pure HPMC/PEO to 3.06 eV and 0.63 eV, respectively. The Urbach energy (<i>E</i>u) values increased from 0.225 ± 0.022 eV to 0.423 ± 0.052 eV as the CuO/TiO<sub>2</sub> concentration increased from 0 to 8 wt%. Adding CuO/TiO<sub>2</sub> NP to the HPMC/PEO matrix significantly improved charge conduction, as evidenced by enhanced conductivity results in the filled samples. With increasing frequency, both the dielectric constant (<i>ε</i>′) and dielectric loss (<i>ε</i>″) decreased. Impedance studies revealed that increasing the CuO/TiO<sub>2</sub> concentration from 0 to 8 wt% reduced the bulk resistance (Rb) from 2.48 × 10<sup>7</sup> Ω to 1.50 × 10<sup>6</sup> Ω, enhancing ionic conductivity and confirming the suitability of the HPMC/PEO–CuO/TiO<sub>2</sub> nanocomposite for microelectronic applications. Overall, the experimental results suggest that the synthesized nanocomposites hold great promise for use in optoelectronic devices and capacitive energy storage systems.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of copper oxide/titanium dioxide-enhanced polymer nanocomposites for optoelectronic devices\",\"authors\":\"H. M. Ragab,&nbsp;N. S. Diab,&nbsp;Azza M. Khaled,&nbsp;Shimaa Mohammed Aboelnaga,&nbsp;S. A. Al-Balawi,&nbsp;A. Al Ojeery,&nbsp;M. O. Farea\",\"doi\":\"10.1007/s10854-025-14414-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Copper oxide/titanium dioxide nanoparticles (CuO/TiO<sub>2</sub> NP) were synthesized by precipitation. The polymer nanocomposites (PNCs) were prepared using the casting technique, incorporating Hydroxypropyl methylcellulose (HPMC) and polyethylene oxide (PEO) with varying concentrations of CuO/TiO<sub>2</sub> nanoparticles: 2, 4, and 8 wt%. X-ray diffraction (XRD) analysis demonstrated a reduction in the crystallinity of the PNCs, highlighting changes in their microcrystalline properties. FT-IR spectroscopy confirmed the successful formation of the nanocomposites and identified the functional groups present. The optical properties were examined with a UV–Vis spectrophotometer, and each film’s absorbance coefficient was calculated. Incorporating 8% CuO/TiO<sub>2</sub> into the HPMC/PEO matrix reduced the bandgap energies (<i>E</i><sub>gd</sub> and <i>E</i><sub>gin</sub>) of pure HPMC/PEO to 3.06 eV and 0.63 eV, respectively. The Urbach energy (<i>E</i>u) values increased from 0.225 ± 0.022 eV to 0.423 ± 0.052 eV as the CuO/TiO<sub>2</sub> concentration increased from 0 to 8 wt%. Adding CuO/TiO<sub>2</sub> NP to the HPMC/PEO matrix significantly improved charge conduction, as evidenced by enhanced conductivity results in the filled samples. With increasing frequency, both the dielectric constant (<i>ε</i>′) and dielectric loss (<i>ε</i>″) decreased. Impedance studies revealed that increasing the CuO/TiO<sub>2</sub> concentration from 0 to 8 wt% reduced the bulk resistance (Rb) from 2.48 × 10<sup>7</sup> Ω to 1.50 × 10<sup>6</sup> Ω, enhancing ionic conductivity and confirming the suitability of the HPMC/PEO–CuO/TiO<sub>2</sub> nanocomposite for microelectronic applications. Overall, the experimental results suggest that the synthesized nanocomposites hold great promise for use in optoelectronic devices and capacitive energy storage systems.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-14414-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14414-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

采用沉淀法合成了氧化铜/二氧化钛纳米颗粒(CuO/TiO2 NP)。采用浇铸技术制备聚合物纳米复合材料(pnc),将羟丙基甲基纤维素(HPMC)和聚乙烯氧化物(PEO)与不同浓度的CuO/TiO2纳米颗粒(分别为2、4和8 wt%)结合。x射线衍射(XRD)分析表明,pnc的结晶度降低,其微晶性质发生了显著变化。傅里叶变换红外光谱证实了纳米复合材料的成功形成,并鉴定了存在的官能团。用紫外-可见分光光度计测定了膜的光学性质,并计算了各膜的吸光度系数。在HPMC/PEO基体中加入8% CuO/TiO2,使纯HPMC/PEO的带隙能Egd和Egin分别降至3.06 eV和0.63 eV。当CuO/TiO2浓度从0 wt%增加到8 wt%时,Urbach能(Eu)值从0.225±0.022 eV增加到0.423±0.052 eV。在HPMC/PEO基体中加入CuO/TiO2 NP可显著改善电荷导电性,填充样品的电导率增强。随着频率的增加,介电常数ε′和介电损耗ε″均减小。阻抗研究表明,将CuO/TiO2浓度从0 wt%增加到8 wt%,使体积电阻(Rb)从2.48 × 107 Ω降低到1.50 × 106 Ω,提高了离子电导率,证实了HPMC/ PEO-CuO /TiO2纳米复合材料适用于微电子应用。总的来说,实验结果表明,合成的纳米复合材料在光电器件和电容储能系统中具有很大的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and characterization of copper oxide/titanium dioxide-enhanced polymer nanocomposites for optoelectronic devices

Copper oxide/titanium dioxide nanoparticles (CuO/TiO2 NP) were synthesized by precipitation. The polymer nanocomposites (PNCs) were prepared using the casting technique, incorporating Hydroxypropyl methylcellulose (HPMC) and polyethylene oxide (PEO) with varying concentrations of CuO/TiO2 nanoparticles: 2, 4, and 8 wt%. X-ray diffraction (XRD) analysis demonstrated a reduction in the crystallinity of the PNCs, highlighting changes in their microcrystalline properties. FT-IR spectroscopy confirmed the successful formation of the nanocomposites and identified the functional groups present. The optical properties were examined with a UV–Vis spectrophotometer, and each film’s absorbance coefficient was calculated. Incorporating 8% CuO/TiO2 into the HPMC/PEO matrix reduced the bandgap energies (Egd and Egin) of pure HPMC/PEO to 3.06 eV and 0.63 eV, respectively. The Urbach energy (Eu) values increased from 0.225 ± 0.022 eV to 0.423 ± 0.052 eV as the CuO/TiO2 concentration increased from 0 to 8 wt%. Adding CuO/TiO2 NP to the HPMC/PEO matrix significantly improved charge conduction, as evidenced by enhanced conductivity results in the filled samples. With increasing frequency, both the dielectric constant (ε′) and dielectric loss (ε″) decreased. Impedance studies revealed that increasing the CuO/TiO2 concentration from 0 to 8 wt% reduced the bulk resistance (Rb) from 2.48 × 107 Ω to 1.50 × 106 Ω, enhancing ionic conductivity and confirming the suitability of the HPMC/PEO–CuO/TiO2 nanocomposite for microelectronic applications. Overall, the experimental results suggest that the synthesized nanocomposites hold great promise for use in optoelectronic devices and capacitive energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信