窗帘模型是对丝状真菌的经典膨胀概念的一种替代和补充

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Igor S. Mazheika, Olga V. Kamzolkina
{"title":"窗帘模型是对丝状真菌的经典膨胀概念的一种替代和补充","authors":"Igor S. Mazheika,&nbsp;Olga V. Kamzolkina","doi":"10.1007/s00203-025-04271-w","DOIUrl":null,"url":null,"abstract":"<div><p>Turgor pressure is critically important for all organisms with the cell wall. In fungi, turgor is involved in the apical growth of hyphae, affects cell size, provides tension to the plasma membrane, creates the necessary rigidity for hyphae to penetrate the substrate, and has many other functions. However, there is increasing evidence that turgor pressure is not always the sole or main factor influencing some of these processes. This review characterizes the curtain model, previously proposed to describe the regulation of plasma membrane tension in the hyphae of basidiomycetes. The current understanding of the four main components of the model is outlined: the driving actin cytoskeleton, the elastic cell wall, tight adhesion of the plasma membrane to the cell wall, and macroinvaginations of the plasma membrane. All four elements, as a single model, complement or replace some physiological functions of turgor and allow us to understand how a non-apical fungal cell maintains its physiological functionality under changing environmental conditions. Further experimental confirmation of this model is fundamentally important for mycology and applied sciences.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The curtain model as an alternative and complementary to the classic turgor concept of filamentous fungi\",\"authors\":\"Igor S. Mazheika,&nbsp;Olga V. Kamzolkina\",\"doi\":\"10.1007/s00203-025-04271-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Turgor pressure is critically important for all organisms with the cell wall. In fungi, turgor is involved in the apical growth of hyphae, affects cell size, provides tension to the plasma membrane, creates the necessary rigidity for hyphae to penetrate the substrate, and has many other functions. However, there is increasing evidence that turgor pressure is not always the sole or main factor influencing some of these processes. This review characterizes the curtain model, previously proposed to describe the regulation of plasma membrane tension in the hyphae of basidiomycetes. The current understanding of the four main components of the model is outlined: the driving actin cytoskeleton, the elastic cell wall, tight adhesion of the plasma membrane to the cell wall, and macroinvaginations of the plasma membrane. All four elements, as a single model, complement or replace some physiological functions of turgor and allow us to understand how a non-apical fungal cell maintains its physiological functionality under changing environmental conditions. Further experimental confirmation of this model is fundamentally important for mycology and applied sciences.</p></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"207 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-025-04271-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04271-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胀压对所有有细胞壁的生物体都是至关重要的。在真菌中,膨胀与菌丝的顶端生长有关,影响细胞大小,为质膜提供张力,为菌丝穿透底物创造必要的刚性,并具有许多其他功能。然而,越来越多的证据表明,膨胀压力并不总是影响这些过程的唯一或主要因素。本文综述了先前提出的用于描述担子菌菌丝质膜张力调节的帷幕模型。本文概述了目前对该模型的四个主要组成部分的理解:驱动肌动蛋白细胞骨架、弹性细胞壁、质膜与细胞壁的紧密粘附以及质膜的大内陷。这四种元素作为一个单一的模型,补充或取代了肿胀的一些生理功能,使我们能够理解非根尖真菌细胞如何在变化的环境条件下保持其生理功能。进一步的实验证实这一模型对真菌学和应用科学至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The curtain model as an alternative and complementary to the classic turgor concept of filamentous fungi

Turgor pressure is critically important for all organisms with the cell wall. In fungi, turgor is involved in the apical growth of hyphae, affects cell size, provides tension to the plasma membrane, creates the necessary rigidity for hyphae to penetrate the substrate, and has many other functions. However, there is increasing evidence that turgor pressure is not always the sole or main factor influencing some of these processes. This review characterizes the curtain model, previously proposed to describe the regulation of plasma membrane tension in the hyphae of basidiomycetes. The current understanding of the four main components of the model is outlined: the driving actin cytoskeleton, the elastic cell wall, tight adhesion of the plasma membrane to the cell wall, and macroinvaginations of the plasma membrane. All four elements, as a single model, complement or replace some physiological functions of turgor and allow us to understand how a non-apical fungal cell maintains its physiological functionality under changing environmental conditions. Further experimental confirmation of this model is fundamentally important for mycology and applied sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信