使用BumpNet自动搜索质量共振

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Jean-François Arguin, Georges Azuelos, Émile Baril, Ilan Bessudo, Fannie Bilodeau, Maryna Borysova, Shikma Bressler, Samuel Calvet, Julien Donini, Etienne Dreyer, Michael Kwok Lam Chu, Eva Mayer, Ethan Meszaros, Nilotpal Kakati, Bruna Pascual Dias, Joséphine Potdevin, Amit Shkuri, Eitan Sprejer, Muhammad Usman
{"title":"使用BumpNet自动搜索质量共振","authors":"Jean-François Arguin,&nbsp;Georges Azuelos,&nbsp;Émile Baril,&nbsp;Ilan Bessudo,&nbsp;Fannie Bilodeau,&nbsp;Maryna Borysova,&nbsp;Shikma Bressler,&nbsp;Samuel Calvet,&nbsp;Julien Donini,&nbsp;Etienne Dreyer,&nbsp;Michael Kwok Lam Chu,&nbsp;Eva Mayer,&nbsp;Ethan Meszaros,&nbsp;Nilotpal Kakati,&nbsp;Bruna Pascual Dias,&nbsp;Joséphine Potdevin,&nbsp;Amit Shkuri,&nbsp;Eitan Sprejer,&nbsp;Muhammad Usman","doi":"10.1007/JHEP02(2025)122","DOIUrl":null,"url":null,"abstract":"<p>The search for resonant mass bumps in invariant-mass distributions remains a cornerstone strategy for uncovering Beyond the Standard Model (BSM) physics at the Large Hadron Collider (LHC). Traditional methods often rely on predefined functional forms and exhaustive computational and human resources, limiting the scope of tested final states and selections. This work presents BumpNet, a machine learning-based approach leveraging advanced neural network architectures to generalize and enhance the Data-Directed Paradigm (DDP) for resonance searches. Trained on a diverse dataset of smoothly-falling analytical functions and realistic simulated data, BumpNet efficiently predicts statistical significance distributions across varying histogram configurations, including those derived from LHC-like conditions. The network’s performance is validated against idealized likelihood ratio-based tests, showing minimal bias and strong sensitivity in detecting mass bumps across a range of scenarios. Additionally, BumpNet’s application to realistic BSM scenarios highlights its capability to identify subtle signals while managing the look-elsewhere effect. These results underscore BumpNet’s potential to expand the reach of resonance searches, paving the way for more comprehensive explorations of LHC data in future analyses.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)122.pdf","citationCount":"0","resultStr":"{\"title\":\"Automatizing the search for mass resonances using BumpNet\",\"authors\":\"Jean-François Arguin,&nbsp;Georges Azuelos,&nbsp;Émile Baril,&nbsp;Ilan Bessudo,&nbsp;Fannie Bilodeau,&nbsp;Maryna Borysova,&nbsp;Shikma Bressler,&nbsp;Samuel Calvet,&nbsp;Julien Donini,&nbsp;Etienne Dreyer,&nbsp;Michael Kwok Lam Chu,&nbsp;Eva Mayer,&nbsp;Ethan Meszaros,&nbsp;Nilotpal Kakati,&nbsp;Bruna Pascual Dias,&nbsp;Joséphine Potdevin,&nbsp;Amit Shkuri,&nbsp;Eitan Sprejer,&nbsp;Muhammad Usman\",\"doi\":\"10.1007/JHEP02(2025)122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The search for resonant mass bumps in invariant-mass distributions remains a cornerstone strategy for uncovering Beyond the Standard Model (BSM) physics at the Large Hadron Collider (LHC). Traditional methods often rely on predefined functional forms and exhaustive computational and human resources, limiting the scope of tested final states and selections. This work presents BumpNet, a machine learning-based approach leveraging advanced neural network architectures to generalize and enhance the Data-Directed Paradigm (DDP) for resonance searches. Trained on a diverse dataset of smoothly-falling analytical functions and realistic simulated data, BumpNet efficiently predicts statistical significance distributions across varying histogram configurations, including those derived from LHC-like conditions. The network’s performance is validated against idealized likelihood ratio-based tests, showing minimal bias and strong sensitivity in detecting mass bumps across a range of scenarios. Additionally, BumpNet’s application to realistic BSM scenarios highlights its capability to identify subtle signals while managing the look-elsewhere effect. These results underscore BumpNet’s potential to expand the reach of resonance searches, paving the way for more comprehensive explorations of LHC data in future analyses.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 2\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)122.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP02(2025)122\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)122","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在恒定质量分布中寻找共振质量颠簸仍然是大型强子对撞机(LHC)揭示超越标准模型(BSM)物理的基石策略。传统的方法往往依赖于预定义的功能形式和详尽的计算和人力资源,限制了测试的最终状态和选择的范围。这项工作提出了BumpNet,这是一种基于机器学习的方法,利用先进的神经网络架构来推广和增强共振搜索的数据导向范式(DDP)。BumpNet在各种平稳下降的分析函数和真实的模拟数据集上进行了训练,可以有效地预测不同直方图配置的统计显著性分布,包括那些来自类似lhc条件的数据。该网络的性能通过基于理想似然比的测试进行了验证,在一系列场景中检测质量凸起时显示出最小的偏差和很强的灵敏度。此外,BumpNet在现实BSM场景中的应用突出了其识别微妙信号的能力,同时管理了“看向别处”效应。这些结果强调了BumpNet扩大共振搜索范围的潜力,为在未来的分析中对LHC数据进行更全面的探索铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatizing the search for mass resonances using BumpNet

The search for resonant mass bumps in invariant-mass distributions remains a cornerstone strategy for uncovering Beyond the Standard Model (BSM) physics at the Large Hadron Collider (LHC). Traditional methods often rely on predefined functional forms and exhaustive computational and human resources, limiting the scope of tested final states and selections. This work presents BumpNet, a machine learning-based approach leveraging advanced neural network architectures to generalize and enhance the Data-Directed Paradigm (DDP) for resonance searches. Trained on a diverse dataset of smoothly-falling analytical functions and realistic simulated data, BumpNet efficiently predicts statistical significance distributions across varying histogram configurations, including those derived from LHC-like conditions. The network’s performance is validated against idealized likelihood ratio-based tests, showing minimal bias and strong sensitivity in detecting mass bumps across a range of scenarios. Additionally, BumpNet’s application to realistic BSM scenarios highlights its capability to identify subtle signals while managing the look-elsewhere effect. These results underscore BumpNet’s potential to expand the reach of resonance searches, paving the way for more comprehensive explorations of LHC data in future analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信