ZnBi2O4/g-C3N4杂化纳米复合材料可见光催化去除孔雀石绿染料的设计

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Kavitha Thangavelu, Gomathi Abimannan, Mohammad Altaf, Yedluri Anil Kumar
{"title":"ZnBi2O4/g-C3N4杂化纳米复合材料可见光催化去除孔雀石绿染料的设计","authors":"Kavitha Thangavelu,&nbsp;Gomathi Abimannan,&nbsp;Mohammad Altaf,&nbsp;Yedluri Anil Kumar","doi":"10.1007/s10876-025-02771-9","DOIUrl":null,"url":null,"abstract":"<div><p>This research work investigates designing the ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> p–n heterojunction for efficient and sustainable environmental remediations. The bare and nanocomposite was successfully synthesized through one pot hydrothermal followed thermal decomposition technique. As prepared materials were characterized by various analytical techniques to examine the phase structural, vibrational modes, texture morphology and light behaviours through powder X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-DRS). To investigate the photocatalytic activity of malachite green dye was utilized as artificial contaminants. The experimental outcomes revealed the established capacity of ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> nanocomposites to light absorption wavelength (501 nm) and reduction of band gap (2.26 eV) facilitated a novel domain in organic pollutant removal which could be synergistic effect of the ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> p–n heterojunction for augment the charge carrier separation and transportation. Moreover g-C<sub>3</sub>N<sub>4</sub> enhance the life time of the photoinduced charge carriers decreased the recombination rate. ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> p–n heterojunction nano composite achieved the highest degradation efficacy is 90 % compare to pristine materials ZnBi<sub>2</sub>O<sub>4</sub> (77%), g-C<sub>3</sub>N<sub>4</sub> (71%) of malachite green dye under visible light exposure in 100 min, with a pseudo-first-order rate constant of 0.02101 min<sup>−1</sup>. Notably, the catalyst demonstrated excellent cyclic stability over five cycles. All the positive aspects of findings suggest that ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> nanocomposites possess to serve as a capable and multifaceted material for the energy and environmental applications.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing ZnBi2O4/g-C3N4 Hybrid Nanocomposite Decorated with Enhanced Visible-Light Photocatalytic Activity for Malachite Green Dye Removal\",\"authors\":\"Kavitha Thangavelu,&nbsp;Gomathi Abimannan,&nbsp;Mohammad Altaf,&nbsp;Yedluri Anil Kumar\",\"doi\":\"10.1007/s10876-025-02771-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research work investigates designing the ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> p–n heterojunction for efficient and sustainable environmental remediations. The bare and nanocomposite was successfully synthesized through one pot hydrothermal followed thermal decomposition technique. As prepared materials were characterized by various analytical techniques to examine the phase structural, vibrational modes, texture morphology and light behaviours through powder X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-DRS). To investigate the photocatalytic activity of malachite green dye was utilized as artificial contaminants. The experimental outcomes revealed the established capacity of ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> nanocomposites to light absorption wavelength (501 nm) and reduction of band gap (2.26 eV) facilitated a novel domain in organic pollutant removal which could be synergistic effect of the ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> p–n heterojunction for augment the charge carrier separation and transportation. Moreover g-C<sub>3</sub>N<sub>4</sub> enhance the life time of the photoinduced charge carriers decreased the recombination rate. ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> p–n heterojunction nano composite achieved the highest degradation efficacy is 90 % compare to pristine materials ZnBi<sub>2</sub>O<sub>4</sub> (77%), g-C<sub>3</sub>N<sub>4</sub> (71%) of malachite green dye under visible light exposure in 100 min, with a pseudo-first-order rate constant of 0.02101 min<sup>−1</sup>. Notably, the catalyst demonstrated excellent cyclic stability over five cycles. All the positive aspects of findings suggest that ZnBi<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> nanocomposites possess to serve as a capable and multifaceted material for the energy and environmental applications.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-025-02771-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02771-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨设计ZnBi2O4/g-C3N4 p-n异质结用于高效和可持续的环境修复。采用一锅热液热分解技术成功合成了裸纳米复合材料。通过粉末x射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、能量色散x射线扫描电镜(SEM-EDX)、紫外-可见漫反射光谱(UV-DRS)等多种分析技术对制备的材料进行了相结构、振动模式、织构形貌和光行为的表征。以孔雀石绿染料为人工污染物,研究其光催化活性。实验结果表明,ZnBi2O4/g-C3N4纳米复合材料的光吸收波长(501 nm)和带隙(2.26 eV)的减小为有机污染物去除开辟了新的领域,这可能是ZnBi2O4/g-C3N4 p-n异质结的协同作用增强了载流子的分离和运输。此外,g-C3N4提高了光诱导载流子的寿命,降低了复合速率。ZnBi2O4/g-C3N4 p-n异质结纳米复合材料在可见光下的100 min降解效率最高,达到90%,而原始材料ZnBi2O4 (77%), g-C3N4(71%)的孔雀石绿染料在可见光下的降解效率最高,伪一级速率常数为0.02101 min−1。值得注意的是,该催化剂在五个循环中表现出优异的循环稳定性。所有积极的方面都表明,ZnBi2O4/g-C3N4纳米复合材料具有作为能源和环境应用的能力和多方面的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing ZnBi2O4/g-C3N4 Hybrid Nanocomposite Decorated with Enhanced Visible-Light Photocatalytic Activity for Malachite Green Dye Removal

This research work investigates designing the ZnBi2O4/g-C3N4 p–n heterojunction for efficient and sustainable environmental remediations. The bare and nanocomposite was successfully synthesized through one pot hydrothermal followed thermal decomposition technique. As prepared materials were characterized by various analytical techniques to examine the phase structural, vibrational modes, texture morphology and light behaviours through powder X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-DRS). To investigate the photocatalytic activity of malachite green dye was utilized as artificial contaminants. The experimental outcomes revealed the established capacity of ZnBi2O4/g-C3N4 nanocomposites to light absorption wavelength (501 nm) and reduction of band gap (2.26 eV) facilitated a novel domain in organic pollutant removal which could be synergistic effect of the ZnBi2O4/g-C3N4 p–n heterojunction for augment the charge carrier separation and transportation. Moreover g-C3N4 enhance the life time of the photoinduced charge carriers decreased the recombination rate. ZnBi2O4/g-C3N4 p–n heterojunction nano composite achieved the highest degradation efficacy is 90 % compare to pristine materials ZnBi2O4 (77%), g-C3N4 (71%) of malachite green dye under visible light exposure in 100 min, with a pseudo-first-order rate constant of 0.02101 min−1. Notably, the catalyst demonstrated excellent cyclic stability over five cycles. All the positive aspects of findings suggest that ZnBi2O4/g-C3N4 nanocomposites possess to serve as a capable and multifaceted material for the energy and environmental applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信