光纤2函子和Tambara-Yamagami融合2类

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Thibault D. Décoppet, Matthew Yu
{"title":"光纤2函子和Tambara-Yamagami融合2类","authors":"Thibault D. Décoppet,&nbsp;Matthew Yu","doi":"10.1007/s00220-025-05249-x","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce group-theoretical fusion 2-categories, a categorification of the notion of a group-theoretical fusion 1-category. Physically speaking, such fusion 2-categories arise by gauging subgroups of a global symmetry. We show that group-theoretical fusion 2-categories are completely characterized by the property that the braided fusion 1-category of endomorphisms of the monoidal unit is Tannakian. Then, we describe the underlying finite semisimple 2-category of group-theoretical fusion 2-categories, and, more generally, of certain 2-categories of bimodules. We also partially describe the fusion rules of group-theoretical fusion 2-categories. Using our previous results, we classify fusion 2-categories admitting a fiber 2-functor. Next, we study fusion 2-categories with a Tambara–Yamagami defect, that is <span>\\(\\mathbb {Z}/2\\)</span>-graded fusion 2-categories whose non-trivially graded factor is <span>\\(\\textbf{2Vect}\\)</span>. We classify these fusion 2-categories, and examine more closely the more restrictive notion of Tambara–Yamagami fusion 2-categories. Throughout, we give many examples to illustrate our various results.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fiber 2-Functors and Tambara–Yamagami Fusion 2-Categories\",\"authors\":\"Thibault D. Décoppet,&nbsp;Matthew Yu\",\"doi\":\"10.1007/s00220-025-05249-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce group-theoretical fusion 2-categories, a categorification of the notion of a group-theoretical fusion 1-category. Physically speaking, such fusion 2-categories arise by gauging subgroups of a global symmetry. We show that group-theoretical fusion 2-categories are completely characterized by the property that the braided fusion 1-category of endomorphisms of the monoidal unit is Tannakian. Then, we describe the underlying finite semisimple 2-category of group-theoretical fusion 2-categories, and, more generally, of certain 2-categories of bimodules. We also partially describe the fusion rules of group-theoretical fusion 2-categories. Using our previous results, we classify fusion 2-categories admitting a fiber 2-functor. Next, we study fusion 2-categories with a Tambara–Yamagami defect, that is <span>\\\\(\\\\mathbb {Z}/2\\\\)</span>-graded fusion 2-categories whose non-trivially graded factor is <span>\\\\(\\\\textbf{2Vect}\\\\)</span>. We classify these fusion 2-categories, and examine more closely the more restrictive notion of Tambara–Yamagami fusion 2-categories. Throughout, we give many examples to illustrate our various results.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05249-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05249-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了群论融合2范畴,这是对群论融合1范畴概念的一种分类。从物理上讲,这种融合类别是通过测量全局对称的子群而产生的。我们证明了群论融合的2类完全被单一性单位的编织融合的1类自同态是Tannakian性质所表征。然后,我们描述了群论融合2-范畴的潜在有限半简单2-范畴,更一般地说,描述了双模的某些2-范畴。我们还部分描述了群论两类融合的融合规律。利用我们之前的结果,我们将融合分为两类,承认一个光纤2函子。接下来,我们研究了具有Tambara-Yamagami缺陷的融合2类,即\(\mathbb {Z}/2\) -分级融合2类,其非琐细分级因子为\(\textbf{2Vect}\)。我们将这些融合分类为2类,并更仔细地研究了更具限制性的Tambara-Yamagami融合2类概念。在整个过程中,我们给出了许多例子来说明我们的各种结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fiber 2-Functors and Tambara–Yamagami Fusion 2-Categories

Fiber 2-Functors and Tambara–Yamagami Fusion 2-Categories

We introduce group-theoretical fusion 2-categories, a categorification of the notion of a group-theoretical fusion 1-category. Physically speaking, such fusion 2-categories arise by gauging subgroups of a global symmetry. We show that group-theoretical fusion 2-categories are completely characterized by the property that the braided fusion 1-category of endomorphisms of the monoidal unit is Tannakian. Then, we describe the underlying finite semisimple 2-category of group-theoretical fusion 2-categories, and, more generally, of certain 2-categories of bimodules. We also partially describe the fusion rules of group-theoretical fusion 2-categories. Using our previous results, we classify fusion 2-categories admitting a fiber 2-functor. Next, we study fusion 2-categories with a Tambara–Yamagami defect, that is \(\mathbb {Z}/2\)-graded fusion 2-categories whose non-trivially graded factor is \(\textbf{2Vect}\). We classify these fusion 2-categories, and examine more closely the more restrictive notion of Tambara–Yamagami fusion 2-categories. Throughout, we give many examples to illustrate our various results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信