{"title":"光纤2函子和Tambara-Yamagami融合2类","authors":"Thibault D. Décoppet, Matthew Yu","doi":"10.1007/s00220-025-05249-x","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce group-theoretical fusion 2-categories, a categorification of the notion of a group-theoretical fusion 1-category. Physically speaking, such fusion 2-categories arise by gauging subgroups of a global symmetry. We show that group-theoretical fusion 2-categories are completely characterized by the property that the braided fusion 1-category of endomorphisms of the monoidal unit is Tannakian. Then, we describe the underlying finite semisimple 2-category of group-theoretical fusion 2-categories, and, more generally, of certain 2-categories of bimodules. We also partially describe the fusion rules of group-theoretical fusion 2-categories. Using our previous results, we classify fusion 2-categories admitting a fiber 2-functor. Next, we study fusion 2-categories with a Tambara–Yamagami defect, that is <span>\\(\\mathbb {Z}/2\\)</span>-graded fusion 2-categories whose non-trivially graded factor is <span>\\(\\textbf{2Vect}\\)</span>. We classify these fusion 2-categories, and examine more closely the more restrictive notion of Tambara–Yamagami fusion 2-categories. Throughout, we give many examples to illustrate our various results.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fiber 2-Functors and Tambara–Yamagami Fusion 2-Categories\",\"authors\":\"Thibault D. Décoppet, Matthew Yu\",\"doi\":\"10.1007/s00220-025-05249-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce group-theoretical fusion 2-categories, a categorification of the notion of a group-theoretical fusion 1-category. Physically speaking, such fusion 2-categories arise by gauging subgroups of a global symmetry. We show that group-theoretical fusion 2-categories are completely characterized by the property that the braided fusion 1-category of endomorphisms of the monoidal unit is Tannakian. Then, we describe the underlying finite semisimple 2-category of group-theoretical fusion 2-categories, and, more generally, of certain 2-categories of bimodules. We also partially describe the fusion rules of group-theoretical fusion 2-categories. Using our previous results, we classify fusion 2-categories admitting a fiber 2-functor. Next, we study fusion 2-categories with a Tambara–Yamagami defect, that is <span>\\\\(\\\\mathbb {Z}/2\\\\)</span>-graded fusion 2-categories whose non-trivially graded factor is <span>\\\\(\\\\textbf{2Vect}\\\\)</span>. We classify these fusion 2-categories, and examine more closely the more restrictive notion of Tambara–Yamagami fusion 2-categories. Throughout, we give many examples to illustrate our various results.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05249-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05249-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Fiber 2-Functors and Tambara–Yamagami Fusion 2-Categories
We introduce group-theoretical fusion 2-categories, a categorification of the notion of a group-theoretical fusion 1-category. Physically speaking, such fusion 2-categories arise by gauging subgroups of a global symmetry. We show that group-theoretical fusion 2-categories are completely characterized by the property that the braided fusion 1-category of endomorphisms of the monoidal unit is Tannakian. Then, we describe the underlying finite semisimple 2-category of group-theoretical fusion 2-categories, and, more generally, of certain 2-categories of bimodules. We also partially describe the fusion rules of group-theoretical fusion 2-categories. Using our previous results, we classify fusion 2-categories admitting a fiber 2-functor. Next, we study fusion 2-categories with a Tambara–Yamagami defect, that is \(\mathbb {Z}/2\)-graded fusion 2-categories whose non-trivially graded factor is \(\textbf{2Vect}\). We classify these fusion 2-categories, and examine more closely the more restrictive notion of Tambara–Yamagami fusion 2-categories. Throughout, we give many examples to illustrate our various results.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.