用于生物医学无线电力传输的磁电/线圈组合接收天线

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuchen Ma;Changrong Liu;Yong Huang;Hua Ke;Xueguan Liu
{"title":"用于生物医学无线电力传输的磁电/线圈组合接收天线","authors":"Yuchen Ma;Changrong Liu;Yong Huang;Hua Ke;Xueguan Liu","doi":"10.1109/JERM.2024.3420737","DOIUrl":null,"url":null,"abstract":"To improve the wireless power transfer efficiency (PTE) of implantable medical devices (IMDs), a receiving rectenna consisting of a magneto-electric (ME) heterostructure mechanical antenna combined with an RF inductive coil is proposed in this paper. The receiving antenna, which operates at 54 kHz, consists of a ME antenna of 30 × 10 × 0.456 mm<sup>3</sup> and a 60-turn inductive coil wound of 30 × 12 × 3 mm<sup>3</sup>. The receiving and transmitting antennas are analyzed and the wireless power transfer performance is measured. The specific absorption rate (SAR) at the resonant frequency is simulated to satisfy the safety standard. The final measured PTE at a distance of 15 mm between the transmitting coil and the proposed receiving antenna is 2.8159%, which is considerably higher than that of a single ME antenna or an inductive coil. The proposed receiving antenna is suitable for wireless biomedical devices.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"15-26"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Magnetoelectric/Coil Receiving Antenna for Biomedical Wireless Power Transfer\",\"authors\":\"Yuchen Ma;Changrong Liu;Yong Huang;Hua Ke;Xueguan Liu\",\"doi\":\"10.1109/JERM.2024.3420737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the wireless power transfer efficiency (PTE) of implantable medical devices (IMDs), a receiving rectenna consisting of a magneto-electric (ME) heterostructure mechanical antenna combined with an RF inductive coil is proposed in this paper. The receiving antenna, which operates at 54 kHz, consists of a ME antenna of 30 × 10 × 0.456 mm<sup>3</sup> and a 60-turn inductive coil wound of 30 × 12 × 3 mm<sup>3</sup>. The receiving and transmitting antennas are analyzed and the wireless power transfer performance is measured. The specific absorption rate (SAR) at the resonant frequency is simulated to satisfy the safety standard. The final measured PTE at a distance of 15 mm between the transmitting coil and the proposed receiving antenna is 2.8159%, which is considerably higher than that of a single ME antenna or an inductive coil. The proposed receiving antenna is suitable for wireless biomedical devices.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"9 1\",\"pages\":\"15-26\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10589445/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10589445/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了提高植入式医疗器械的无线功率传输效率,提出了一种由磁电异质结构机械天线与射频感应线圈相结合的接收整流天线。接收天线工作在54 kHz,由一个30 × 10 × 0.456 mm3的ME天线和一个30 × 12 × 3mm3的60匝电感线圈线圈组成。对接收天线和发射天线进行了分析,并测量了无线功率传输性能。模拟了谐振频率下的比吸收率(SAR),以满足安全标准。在发射线圈与拟议接收天线之间15mm距离处,最终测量的PTE为2.8159%,大大高于单个ME天线或感应线圈的PTE。所提出的接收天线适用于无线生物医学设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined Magnetoelectric/Coil Receiving Antenna for Biomedical Wireless Power Transfer
To improve the wireless power transfer efficiency (PTE) of implantable medical devices (IMDs), a receiving rectenna consisting of a magneto-electric (ME) heterostructure mechanical antenna combined with an RF inductive coil is proposed in this paper. The receiving antenna, which operates at 54 kHz, consists of a ME antenna of 30 × 10 × 0.456 mm3 and a 60-turn inductive coil wound of 30 × 12 × 3 mm3. The receiving and transmitting antennas are analyzed and the wireless power transfer performance is measured. The specific absorption rate (SAR) at the resonant frequency is simulated to satisfy the safety standard. The final measured PTE at a distance of 15 mm between the transmitting coil and the proposed receiving antenna is 2.8159%, which is considerably higher than that of a single ME antenna or an inductive coil. The proposed receiving antenna is suitable for wireless biomedical devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信