反向嫁接揭示了赤霉素在番茄根冠沟通中的作用

IF 4 3区 生物学 Q1 PLANT SCIENCES
Rebeca Patrícia Omena-Garcia , José G. Vallarino , Paula da Fonseca-Pereira , Auxiliadora Oliveira Martins , Pedro Martino Brandão , Dimas M. Ribeiro , Sonia Osorio , Alisdair R. Fernie , Wagner L. Araújo , Adriano Nunes-Nesi
{"title":"反向嫁接揭示了赤霉素在番茄根冠沟通中的作用","authors":"Rebeca Patrícia Omena-Garcia ,&nbsp;José G. Vallarino ,&nbsp;Paula da Fonseca-Pereira ,&nbsp;Auxiliadora Oliveira Martins ,&nbsp;Pedro Martino Brandão ,&nbsp;Dimas M. Ribeiro ,&nbsp;Sonia Osorio ,&nbsp;Alisdair R. Fernie ,&nbsp;Wagner L. Araújo ,&nbsp;Adriano Nunes-Nesi","doi":"10.1016/j.jplph.2025.154444","DOIUrl":null,"url":null,"abstract":"<div><div>Gibberellins (GAs) serve a multitude of functions in the regulation of processes associated with plant growth and development. The GA demand of an organ can be met through long-range transport from the site of synthesis. To examine the impact of altered GA biosynthesis on metabolism and growth, we performed reciprocal grafts of wild-type (WT; <em>Solanum lycopersicum</em> L.) and mutants exhibiting varying degrees of GA-deficiency (<em>gib</em> lines). The relative growth rate, based on plant height and specific leaf area, of the <em>gib</em> scions demonstrated partial recovery upon grafting to a WT rootstock. In contrast, the WT scion demonstrated recovery of root biomass and the root/shoot ratio in plants with <em>gib</em> rootstocks. Although the majority of free amino acids accumulated and negatively affected root growth of the WT rootstock, while the levels of organic acids and sugars were reduced. Increased levels of sugars and decreased levels of branched-chain amino acids in the roots of <em>gib</em> rootstock suggested that were the main carbon source to sustain the root growth. The multivariate analysis demonstrated growth and metabolism adjustments of the WT rootstock to supply the higher GA demand of the <em>gib</em> scions. In contrast, the WT scion displayed relatively minor metabolic alterations to support high rates of root growth and a reduced GA demand by the <em>gib</em> rootstocks. In this context, the strategic use of grafting between WT plants and GA-deficient mutants offers a viable approach to boosting agricultural productivity and strengthening plant resilience against abiotic stresses, providing an innovative alternative for sustainable crop management under challenging environmental conditions.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"306 ","pages":"Article 154444"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reciprocal grafting reveals the role of gibberellins in tomato root-shoot communication\",\"authors\":\"Rebeca Patrícia Omena-Garcia ,&nbsp;José G. Vallarino ,&nbsp;Paula da Fonseca-Pereira ,&nbsp;Auxiliadora Oliveira Martins ,&nbsp;Pedro Martino Brandão ,&nbsp;Dimas M. Ribeiro ,&nbsp;Sonia Osorio ,&nbsp;Alisdair R. Fernie ,&nbsp;Wagner L. Araújo ,&nbsp;Adriano Nunes-Nesi\",\"doi\":\"10.1016/j.jplph.2025.154444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gibberellins (GAs) serve a multitude of functions in the regulation of processes associated with plant growth and development. The GA demand of an organ can be met through long-range transport from the site of synthesis. To examine the impact of altered GA biosynthesis on metabolism and growth, we performed reciprocal grafts of wild-type (WT; <em>Solanum lycopersicum</em> L.) and mutants exhibiting varying degrees of GA-deficiency (<em>gib</em> lines). The relative growth rate, based on plant height and specific leaf area, of the <em>gib</em> scions demonstrated partial recovery upon grafting to a WT rootstock. In contrast, the WT scion demonstrated recovery of root biomass and the root/shoot ratio in plants with <em>gib</em> rootstocks. Although the majority of free amino acids accumulated and negatively affected root growth of the WT rootstock, while the levels of organic acids and sugars were reduced. Increased levels of sugars and decreased levels of branched-chain amino acids in the roots of <em>gib</em> rootstock suggested that were the main carbon source to sustain the root growth. The multivariate analysis demonstrated growth and metabolism adjustments of the WT rootstock to supply the higher GA demand of the <em>gib</em> scions. In contrast, the WT scion displayed relatively minor metabolic alterations to support high rates of root growth and a reduced GA demand by the <em>gib</em> rootstocks. In this context, the strategic use of grafting between WT plants and GA-deficient mutants offers a viable approach to boosting agricultural productivity and strengthening plant resilience against abiotic stresses, providing an innovative alternative for sustainable crop management under challenging environmental conditions.</div></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"306 \",\"pages\":\"Article 154444\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161725000264\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725000264","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

赤霉素(giberellins, GAs)在植物生长发育过程的调控中发挥着多种功能。一个器官对GA的需求可以通过从合成部位的远距离运输来满足。为了研究改变的GA生物合成对代谢和生长的影响,我们进行了野生型(WT;茄(Solanum lycopersicum L.)和表现出不同程度ga缺乏的突变体(gib系)。嫁接到WT砧木后,基于株高和比叶面积的相对生长率显示出部分恢复。相比之下,WT接穗的根生物量和根冠比在有gib砧木的植物中有所恢复。虽然大部分游离氨基酸的积累对WT砧木的根系生长产生了负面影响,但有机酸和糖类的水平却降低了。根中糖含量的增加和支链氨基酸含量的降低表明,支链氨基酸是维持根生长的主要碳源。多变量分析表明,野生型砧木的生长和代谢调节能够满足杂交接穗对GA的更高需求。相比之下,WT接穗表现出相对较小的代谢变化,以支持较高的根系生长速率和减少对gib砧木的GA需求。在此背景下,WT植物与ga缺乏突变体之间的嫁接为提高农业生产力和增强植物对非生物胁迫的抵御能力提供了一种可行的方法,为具有挑战性的环境条件下的可持续作物管理提供了一种创新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reciprocal grafting reveals the role of gibberellins in tomato root-shoot communication
Gibberellins (GAs) serve a multitude of functions in the regulation of processes associated with plant growth and development. The GA demand of an organ can be met through long-range transport from the site of synthesis. To examine the impact of altered GA biosynthesis on metabolism and growth, we performed reciprocal grafts of wild-type (WT; Solanum lycopersicum L.) and mutants exhibiting varying degrees of GA-deficiency (gib lines). The relative growth rate, based on plant height and specific leaf area, of the gib scions demonstrated partial recovery upon grafting to a WT rootstock. In contrast, the WT scion demonstrated recovery of root biomass and the root/shoot ratio in plants with gib rootstocks. Although the majority of free amino acids accumulated and negatively affected root growth of the WT rootstock, while the levels of organic acids and sugars were reduced. Increased levels of sugars and decreased levels of branched-chain amino acids in the roots of gib rootstock suggested that were the main carbon source to sustain the root growth. The multivariate analysis demonstrated growth and metabolism adjustments of the WT rootstock to supply the higher GA demand of the gib scions. In contrast, the WT scion displayed relatively minor metabolic alterations to support high rates of root growth and a reduced GA demand by the gib rootstocks. In this context, the strategic use of grafting between WT plants and GA-deficient mutants offers a viable approach to boosting agricultural productivity and strengthening plant resilience against abiotic stresses, providing an innovative alternative for sustainable crop management under challenging environmental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信