双分子动力学和垂直通道对流冷却条件下变热相关反应性Williamson流体的不可逆性和流动特性

IF 3.8 Q2 CHEMISTRY, PHYSICAL
A.D. Ohaegbue , S.O. Salawu , R.A. Oderinu , P. Adegbite , A.O. Akindele , F.D. Ayegbusi , A.T. Ayorinde
{"title":"双分子动力学和垂直通道对流冷却条件下变热相关反应性Williamson流体的不可逆性和流动特性","authors":"A.D. Ohaegbue ,&nbsp;S.O. Salawu ,&nbsp;R.A. Oderinu ,&nbsp;P. Adegbite ,&nbsp;A.O. Akindele ,&nbsp;F.D. Ayegbusi ,&nbsp;A.T. Ayorinde","doi":"10.1016/j.chphi.2025.100853","DOIUrl":null,"url":null,"abstract":"<div><div>The major industrial and technological application of non-Newtonian fluid in everyday life has garnered the attention of scientists due to its high rate of energy transfer. Consequently, this study examines the effects of variable thermal dependent properties, wall gradient, Nusselt number, and entropy generation on reactive Williamson fluid under Bimolecular kinetics within convective boundary conditions. The nonlinear ordinary differential equations for energy and momentum are derived through appropriate similarity transformations. These dimensionless ODEs are then transformed into a system of first-order equations and numerically solved using the weighted residual technique couple with Galarkin approximation integration method. The key parameter's effects on the flow fields are analyzed and presented through figures and tables. The results show that the Grashof number, variable viscosity, pressure gradient, enhanced fluid motion, and the Brinkman number, activation energy with Frank-Kamenetskii parameter, influence thermal behavior through viscous heating, reaction rates, and temperature sensitivity.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100853"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irreversibility and flow characteristics of reactive Williamson fluid with variable thermal dependent properties under bimolecular kinetics and vertical channel convective cooling\",\"authors\":\"A.D. Ohaegbue ,&nbsp;S.O. Salawu ,&nbsp;R.A. Oderinu ,&nbsp;P. Adegbite ,&nbsp;A.O. Akindele ,&nbsp;F.D. Ayegbusi ,&nbsp;A.T. Ayorinde\",\"doi\":\"10.1016/j.chphi.2025.100853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The major industrial and technological application of non-Newtonian fluid in everyday life has garnered the attention of scientists due to its high rate of energy transfer. Consequently, this study examines the effects of variable thermal dependent properties, wall gradient, Nusselt number, and entropy generation on reactive Williamson fluid under Bimolecular kinetics within convective boundary conditions. The nonlinear ordinary differential equations for energy and momentum are derived through appropriate similarity transformations. These dimensionless ODEs are then transformed into a system of first-order equations and numerically solved using the weighted residual technique couple with Galarkin approximation integration method. The key parameter's effects on the flow fields are analyzed and presented through figures and tables. The results show that the Grashof number, variable viscosity, pressure gradient, enhanced fluid motion, and the Brinkman number, activation energy with Frank-Kamenetskii parameter, influence thermal behavior through viscous heating, reaction rates, and temperature sensitivity.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"10 \",\"pages\":\"Article 100853\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022425000416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425000416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

非牛顿流体在日常生活中的主要工业和技术应用因其高能量传递率而引起了科学家的注意。因此,本研究考察了在对流边界条件下双分子动力学下,变热相关性质、壁面梯度、努塞尔数和熵生成对反应性Williamson流体的影响。通过适当的相似变换,导出了能量和动量的非线性常微分方程。然后将这些无量纲微分方程转化为一阶方程组,利用加权残差技术和Galarkin近似积分法对其进行数值求解。通过图形和表格分析了关键参数对流场的影响。结果表明,Grashof数、变粘度、压力梯度、增强的流体运动和Brinkman数、具有Frank-Kamenetskii参数的活化能通过粘性加热、反应速率和温度敏感性影响热行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Irreversibility and flow characteristics of reactive Williamson fluid with variable thermal dependent properties under bimolecular kinetics and vertical channel convective cooling

Irreversibility and flow characteristics of reactive Williamson fluid with variable thermal dependent properties under bimolecular kinetics and vertical channel convective cooling
The major industrial and technological application of non-Newtonian fluid in everyday life has garnered the attention of scientists due to its high rate of energy transfer. Consequently, this study examines the effects of variable thermal dependent properties, wall gradient, Nusselt number, and entropy generation on reactive Williamson fluid under Bimolecular kinetics within convective boundary conditions. The nonlinear ordinary differential equations for energy and momentum are derived through appropriate similarity transformations. These dimensionless ODEs are then transformed into a system of first-order equations and numerically solved using the weighted residual technique couple with Galarkin approximation integration method. The key parameter's effects on the flow fields are analyzed and presented through figures and tables. The results show that the Grashof number, variable viscosity, pressure gradient, enhanced fluid motion, and the Brinkman number, activation energy with Frank-Kamenetskii parameter, influence thermal behavior through viscous heating, reaction rates, and temperature sensitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信