用广义分数阶伯努利小波求解一类分布阶时间分数阶波扩散微分方程

Q1 Mathematics
Ali AbuGneam, Somayeh Nemati, Afshin Babaei
{"title":"用广义分数阶伯努利小波求解一类分布阶时间分数阶波扩散微分方程","authors":"Ali AbuGneam,&nbsp;Somayeh Nemati,&nbsp;Afshin Babaei","doi":"10.1016/j.padiff.2025.101131","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, we propose a new numerical method for solving a class of distributed-order fractional partial differential equations, specifically focusing on distributed-order time fractional wave-diffusion equations. The method begins by introducing a novel generalization of Bernoulli wavelets and deriving an exact result for the Riemann–Liouville integral of these new basis functions. Utilizing the Gauss–Legendre quadrature formula and a strategically chosen set of collocation points, along with approximations for the unknown function and its derivatives, we transform the problem into a system of algebraic equations. An error analysis is then conducted for the approximation of a bivariate function using fractional-order Bernoulli wavelets. Finally, three examples are solved to demonstrate the method’s applicability and accuracy, with the numerical results confirming its effectiveness. These findings demonstrate that the parameters of the basis functions can be adjusted to suit the given problem, thereby enhancing the accuracy of the method.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"13 ","pages":"Article 101131"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving a class of distributed-order time fractional wave-diffusion differential equations using the generalized fractional-order Bernoulli wavelets\",\"authors\":\"Ali AbuGneam,&nbsp;Somayeh Nemati,&nbsp;Afshin Babaei\",\"doi\":\"10.1016/j.padiff.2025.101131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research, we propose a new numerical method for solving a class of distributed-order fractional partial differential equations, specifically focusing on distributed-order time fractional wave-diffusion equations. The method begins by introducing a novel generalization of Bernoulli wavelets and deriving an exact result for the Riemann–Liouville integral of these new basis functions. Utilizing the Gauss–Legendre quadrature formula and a strategically chosen set of collocation points, along with approximations for the unknown function and its derivatives, we transform the problem into a system of algebraic equations. An error analysis is then conducted for the approximation of a bivariate function using fractional-order Bernoulli wavelets. Finally, three examples are solved to demonstrate the method’s applicability and accuracy, with the numerical results confirming its effectiveness. These findings demonstrate that the parameters of the basis functions can be adjusted to suit the given problem, thereby enhancing the accuracy of the method.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"13 \",\"pages\":\"Article 101131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125000580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种新的数值方法来求解一类分布阶分数阶偏微分方程,特别是分布阶时间分数阶波扩散方程。该方法首先引入伯努利小波的一种新推广,并推导出这些新基函数的黎曼-刘维尔积分的精确结果。利用高斯-勒让德正交公式和一组有策略地选择的配点,以及未知函数及其导数的近似值,我们将问题转化为一个代数方程组。然后用分数阶伯努利小波对二元函数进行了误差分析。最后通过三个算例验证了该方法的适用性和准确性,数值结果验证了该方法的有效性。这些结果表明,基函数的参数可以调整以适应给定的问题,从而提高了方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving a class of distributed-order time fractional wave-diffusion differential equations using the generalized fractional-order Bernoulli wavelets
In this research, we propose a new numerical method for solving a class of distributed-order fractional partial differential equations, specifically focusing on distributed-order time fractional wave-diffusion equations. The method begins by introducing a novel generalization of Bernoulli wavelets and deriving an exact result for the Riemann–Liouville integral of these new basis functions. Utilizing the Gauss–Legendre quadrature formula and a strategically chosen set of collocation points, along with approximations for the unknown function and its derivatives, we transform the problem into a system of algebraic equations. An error analysis is then conducted for the approximation of a bivariate function using fractional-order Bernoulli wavelets. Finally, three examples are solved to demonstrate the method’s applicability and accuracy, with the numerical results confirming its effectiveness. These findings demonstrate that the parameters of the basis functions can be adjusted to suit the given problem, thereby enhancing the accuracy of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信