Mahima Choudhury , Annika J. Deans , Daniel R. Candland , Tara L. Deans
{"title":"Advancing cell therapies with artificial intelligence and synthetic biology","authors":"Mahima Choudhury , Annika J. Deans , Daniel R. Candland , Tara L. Deans","doi":"10.1016/j.cobme.2025.100580","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence provides an exciting avenue to improve approaches in cell therapies by learning and predicting dynamic gene expression patterns from large datasets of stem cell differentiation. The integration of synthetic biology provides genetic tools that mimic the spatial and temporal expression patterns during differentiation, enhancing the potential to significantly improve differentiation outcomes and further our understanding of the mechanisms involved during cell fate decisions.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100580"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451125000054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Advancing cell therapies with artificial intelligence and synthetic biology
Artificial intelligence provides an exciting avenue to improve approaches in cell therapies by learning and predicting dynamic gene expression patterns from large datasets of stem cell differentiation. The integration of synthetic biology provides genetic tools that mimic the spatial and temporal expression patterns during differentiation, enhancing the potential to significantly improve differentiation outcomes and further our understanding of the mechanisms involved during cell fate decisions.