{"title":"有界度树与一般图的Ramsey数","authors":"Richard Montgomery , Matías Pavez-Signé , Jun Yan","doi":"10.1016/j.jctb.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>For every <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and Δ, we prove that there exists a constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>Δ</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> such that the following holds. For every graph <em>H</em> with <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>k</mi></math></span> and every tree <em>T</em> with at least <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>Δ</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>|</mo><mi>H</mi><mo>|</mo></math></span> vertices and maximum degree at most Δ, the Ramsey number <span><math><mi>R</mi><mo>(</mo><mi>T</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is <span><math><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mo>|</mo><mi>T</mi><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>σ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, where <span><math><mi>σ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is the size of a smallest colour class across all proper <em>k</em>-colourings of <em>H</em>. This is tight up to the value of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>Δ</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>, and confirms a conjecture of Balla, Pokrovskiy, and Sudakov.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 102-145"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramsey numbers of bounded degree trees versus general graphs\",\"authors\":\"Richard Montgomery , Matías Pavez-Signé , Jun Yan\",\"doi\":\"10.1016/j.jctb.2025.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For every <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and Δ, we prove that there exists a constant <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>Δ</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> such that the following holds. For every graph <em>H</em> with <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>k</mi></math></span> and every tree <em>T</em> with at least <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>Δ</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>|</mo><mi>H</mi><mo>|</mo></math></span> vertices and maximum degree at most Δ, the Ramsey number <span><math><mi>R</mi><mo>(</mo><mi>T</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is <span><math><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mo>|</mo><mi>T</mi><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>σ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, where <span><math><mi>σ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is the size of a smallest colour class across all proper <em>k</em>-colourings of <em>H</em>. This is tight up to the value of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>Δ</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>, and confirms a conjecture of Balla, Pokrovskiy, and Sudakov.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"173 \",\"pages\":\"Pages 102-145\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000115\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000115","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ramsey numbers of bounded degree trees versus general graphs
For every and Δ, we prove that there exists a constant such that the following holds. For every graph H with and every tree T with at least vertices and maximum degree at most Δ, the Ramsey number is , where is the size of a smallest colour class across all proper k-colourings of H. This is tight up to the value of , and confirms a conjecture of Balla, Pokrovskiy, and Sudakov.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.