基于水土评价工具的巴西半干旱区Pajeú河流域流量预测

IF 1.7 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Thieres George Freire da Silva , Ana Karlla Penna Rocha , Alanderson Firmino de Lucas , Gabriel Thales Barboza Marinho , Alexandre Maniçoba da Rosa Ferraz Jardim , Luciana Sandra Bastos de Souza , Abelardo Antônio de Assunção Montenegro , Werônica Meira de Souza
{"title":"基于水土评价工具的巴西半干旱区Pajeú河流域流量预测","authors":"Thieres George Freire da Silva ,&nbsp;Ana Karlla Penna Rocha ,&nbsp;Alanderson Firmino de Lucas ,&nbsp;Gabriel Thales Barboza Marinho ,&nbsp;Alexandre Maniçoba da Rosa Ferraz Jardim ,&nbsp;Luciana Sandra Bastos de Souza ,&nbsp;Abelardo Antônio de Assunção Montenegro ,&nbsp;Werônica Meira de Souza","doi":"10.1016/j.jsames.2025.105420","DOIUrl":null,"url":null,"abstract":"<div><div>It is considered highly important for developing strategies to conserve water resources and minimize environmental impacts, especially in places with low rainfall and high potential evapotranspiration, such as semiarid regions. In this context, the main objective of this study was to evaluate the ranking of the most sensitive parameters and the calibration and validation of the streamflow between 1976 and 2018 in the Pajeú river Basin using the SWAT hydrological model. The SUFI-2 algorithm, integrated into the SWAT-CUP software, was used for sensitivity analysis (SA), calibration (from 1976 to 1995), validation (from 1999 to 2018), and uncertainty analysis. Results showed that only seven parameters related to land use and land cover (initial SCS runoff curve number for moisture condition II – CN2), groundwater (baseflow alpha factor – ALPHA_BF, groundwater delay time – GW_DELAY, threshold depth of water in the shallow aquifer required for return flow to occur – GWQMN, and groundwater “revap” coefficient – GW_REVAP), and runoff (slope length for lateral subsurface flow – SLSOIL and lateral flow travel time – LAT_TTIME) were considered the most sensitive and were subsequently calibrated. Thus, CN2 was reduced by 28%, consequently decreasing surface runoff. ALPHA_BF showed a slow response to recharge, while GW_DELAY affected groundwater discharge by 47 days. GWQMN increased by approximately 2586.9 mm, improving streamflow simulation. GW_REVAP, with a value close to zero, exhibited a reduction trend in the groundwater table during the dry season and in the upward movement of water to the root zone. The basin slope class ≤8% increased SLSOIL to 29.41 m, which in turn increased LAT_TTIME by 99.47 days. SWAT also simulated maximum streamflows associated with extreme precipitation events in an acceptable manner. The Floresta gauging station achieved more satisfactory performance, as observed in the percentage of observations covered by the 95% prediction uncertainty – 95PPU (P-factor), the average thickness of the 95PPU band divided by the standard deviation of the measured data (R-factor), the coefficient of determination (R<sup>2</sup>), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS), with respective values of 0.68, 1.05, 0.64, 0.63, and 6.5% for calibration. Therefore, investigating hydrological processes in this region allows for the development of water planning strategies, given the significant impacts on water resources and agricultural production, especially during drought events.</div></div>","PeriodicalId":50047,"journal":{"name":"Journal of South American Earth Sciences","volume":"156 ","pages":"Article 105420"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streamflow prediction based on the soil and water assessment tool in the Pajeú river basin, Brazilian semiarid\",\"authors\":\"Thieres George Freire da Silva ,&nbsp;Ana Karlla Penna Rocha ,&nbsp;Alanderson Firmino de Lucas ,&nbsp;Gabriel Thales Barboza Marinho ,&nbsp;Alexandre Maniçoba da Rosa Ferraz Jardim ,&nbsp;Luciana Sandra Bastos de Souza ,&nbsp;Abelardo Antônio de Assunção Montenegro ,&nbsp;Werônica Meira de Souza\",\"doi\":\"10.1016/j.jsames.2025.105420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is considered highly important for developing strategies to conserve water resources and minimize environmental impacts, especially in places with low rainfall and high potential evapotranspiration, such as semiarid regions. In this context, the main objective of this study was to evaluate the ranking of the most sensitive parameters and the calibration and validation of the streamflow between 1976 and 2018 in the Pajeú river Basin using the SWAT hydrological model. The SUFI-2 algorithm, integrated into the SWAT-CUP software, was used for sensitivity analysis (SA), calibration (from 1976 to 1995), validation (from 1999 to 2018), and uncertainty analysis. Results showed that only seven parameters related to land use and land cover (initial SCS runoff curve number for moisture condition II – CN2), groundwater (baseflow alpha factor – ALPHA_BF, groundwater delay time – GW_DELAY, threshold depth of water in the shallow aquifer required for return flow to occur – GWQMN, and groundwater “revap” coefficient – GW_REVAP), and runoff (slope length for lateral subsurface flow – SLSOIL and lateral flow travel time – LAT_TTIME) were considered the most sensitive and were subsequently calibrated. Thus, CN2 was reduced by 28%, consequently decreasing surface runoff. ALPHA_BF showed a slow response to recharge, while GW_DELAY affected groundwater discharge by 47 days. GWQMN increased by approximately 2586.9 mm, improving streamflow simulation. GW_REVAP, with a value close to zero, exhibited a reduction trend in the groundwater table during the dry season and in the upward movement of water to the root zone. The basin slope class ≤8% increased SLSOIL to 29.41 m, which in turn increased LAT_TTIME by 99.47 days. SWAT also simulated maximum streamflows associated with extreme precipitation events in an acceptable manner. The Floresta gauging station achieved more satisfactory performance, as observed in the percentage of observations covered by the 95% prediction uncertainty – 95PPU (P-factor), the average thickness of the 95PPU band divided by the standard deviation of the measured data (R-factor), the coefficient of determination (R<sup>2</sup>), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS), with respective values of 0.68, 1.05, 0.64, 0.63, and 6.5% for calibration. Therefore, investigating hydrological processes in this region allows for the development of water planning strategies, given the significant impacts on water resources and agricultural production, especially during drought events.</div></div>\",\"PeriodicalId\":50047,\"journal\":{\"name\":\"Journal of South American Earth Sciences\",\"volume\":\"156 \",\"pages\":\"Article 105420\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of South American Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895981125000823\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of South American Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895981125000823","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

它被认为对制定保护水资源和尽量减少环境影响的战略非常重要,特别是在降雨量少和潜在蒸散量高的地方,如半干旱地区。在此背景下,本研究的主要目的是利用SWAT水文模型评估Pajeú流域1976 - 2018年最敏感参数的排序和流量的定标与验证。将SUFI-2算法集成到SWAT-CUP软件中,用于灵敏度分析(SA)、校准(1976 - 1995)、验证(1999 - 2018)和不确定度分析。结果表明:与土地利用和土地覆盖相关的参数只有7个(水分条件II的初始SCS径流曲线数- CN2)、地下水(基流α因子- ALPHA_BF、地下水延迟时间- GW_DELAY、浅层水发生回流所需的阈值深度- GWQMN、地下水“revap”系数- GW_REVAP);径流(侧向地下流坡长- SLSOIL和侧向流行程时间- LAT_TTIME)被认为是最敏感的,随后进行了校准。因此,CN2减少了28%,从而减少了地表径流。ALPHA_BF对补给的响应较慢,而GW_DELAY对地下水流量的影响为47 d。GWQMN增加了约2586.9 mm,改善了水流模拟。GW_REVAP值接近于零,枯水期地下水位和根区上升水呈减少趋势。坡度等级≤8%使SLSOIL增加到29.41 m,使LAT_TTIME增加99.47 d。SWAT还以可接受的方式模拟了与极端降水事件相关的最大流量。在95%预测不确定度覆盖的观测值百分比- 95PPU (p因子)、95PPU波段的平均厚度除以测量数据的标准差(r因子)、决定系数(R2)、NSE (NSE)和百分比偏差(PBIAS)方面,Floresta测量站取得了较为满意的效果,校正值分别为0.68、1.05、0.64、0.63和6.5%。因此,考虑到对水资源和农业生产的重大影响,特别是在干旱事件期间,调查该地区的水文过程可以制定水规划战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Streamflow prediction based on the soil and water assessment tool in the Pajeú river basin, Brazilian semiarid
It is considered highly important for developing strategies to conserve water resources and minimize environmental impacts, especially in places with low rainfall and high potential evapotranspiration, such as semiarid regions. In this context, the main objective of this study was to evaluate the ranking of the most sensitive parameters and the calibration and validation of the streamflow between 1976 and 2018 in the Pajeú river Basin using the SWAT hydrological model. The SUFI-2 algorithm, integrated into the SWAT-CUP software, was used for sensitivity analysis (SA), calibration (from 1976 to 1995), validation (from 1999 to 2018), and uncertainty analysis. Results showed that only seven parameters related to land use and land cover (initial SCS runoff curve number for moisture condition II – CN2), groundwater (baseflow alpha factor – ALPHA_BF, groundwater delay time – GW_DELAY, threshold depth of water in the shallow aquifer required for return flow to occur – GWQMN, and groundwater “revap” coefficient – GW_REVAP), and runoff (slope length for lateral subsurface flow – SLSOIL and lateral flow travel time – LAT_TTIME) were considered the most sensitive and were subsequently calibrated. Thus, CN2 was reduced by 28%, consequently decreasing surface runoff. ALPHA_BF showed a slow response to recharge, while GW_DELAY affected groundwater discharge by 47 days. GWQMN increased by approximately 2586.9 mm, improving streamflow simulation. GW_REVAP, with a value close to zero, exhibited a reduction trend in the groundwater table during the dry season and in the upward movement of water to the root zone. The basin slope class ≤8% increased SLSOIL to 29.41 m, which in turn increased LAT_TTIME by 99.47 days. SWAT also simulated maximum streamflows associated with extreme precipitation events in an acceptable manner. The Floresta gauging station achieved more satisfactory performance, as observed in the percentage of observations covered by the 95% prediction uncertainty – 95PPU (P-factor), the average thickness of the 95PPU band divided by the standard deviation of the measured data (R-factor), the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS), with respective values of 0.68, 1.05, 0.64, 0.63, and 6.5% for calibration. Therefore, investigating hydrological processes in this region allows for the development of water planning strategies, given the significant impacts on water resources and agricultural production, especially during drought events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of South American Earth Sciences
Journal of South American Earth Sciences 地学-地球科学综合
CiteScore
3.70
自引率
22.20%
发文量
364
审稿时长
6-12 weeks
期刊介绍: Papers must have a regional appeal and should present work of more than local significance. Research papers dealing with the regional geology of South American cratons and mobile belts, within the following research fields: -Economic geology, metallogenesis and hydrocarbon genesis and reservoirs. -Geophysics, geochemistry, volcanology, igneous and metamorphic petrology. -Tectonics, neo- and seismotectonics and geodynamic modeling. -Geomorphology, geological hazards, environmental geology, climate change in America and Antarctica, and soil research. -Stratigraphy, sedimentology, structure and basin evolution. -Paleontology, paleoecology, paleoclimatology and Quaternary geology. New developments in already established regional projects and new initiatives dealing with the geology of the continent will be summarized and presented on a regular basis. Short notes, discussions, book reviews and conference and workshop reports will also be included when relevant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信