用于决策树引导的共价药物开发的质谱方法和 PK/PD 数学模型

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Md Amin Hossain, Rutali R. Brahme, Brandon C. Miller, Jakal Amin, Marcela de Barros, Jaime L. Schneider, Jared R. Auclair, Carla Mattos, Qingping Wang, Nathalie Y. R. Agar, David J. Greenblatt, Roman Manetsch, Jeffrey N. Agar
{"title":"用于决策树引导的共价药物开发的质谱方法和 PK/PD 数学模型","authors":"Md Amin Hossain, Rutali R. Brahme, Brandon C. Miller, Jakal Amin, Marcela de Barros, Jaime L. Schneider, Jared R. Auclair, Carla Mattos, Qingping Wang, Nathalie Y. R. Agar, David J. Greenblatt, Roman Manetsch, Jeffrey N. Agar","doi":"10.1038/s41467-025-56985-6","DOIUrl":null,"url":null,"abstract":"<p>Covalent drug discovery efforts are growing rapidly but have major unaddressed limitations. These include high false positive rates during hit-to-lead identification; the inherent uncoupling of covalent drug concentration and effect [i.e., uncoupling of pharmacokinetics (PK) and pharmacodynamics (PD)]; and a lack of bioanalytical and modeling methods for determining PK and PD parameters. We present a covalent drug discovery workflow that addresses these limitations. Our bioanalytical methods are based upon a mass spectrometry (MS) assay that can measure the percentage of drug-target protein conjugation (% target engagement) in biological matrices. Further we develop an <u>i</u>ntact protein <u>PK/PD</u> model (<i>i</i>PK/PD) that outputs PK parameters (absorption and distribution) as well as PD parameters (mechanism of action, protein metabolic half-lives, dose, regimen, effect) based on time-dependent target engagement data. Notably, the <i>i</i>PK/PD model is applicable to any measurement (e.g., bottom-up MS and other drug binding studies) that yields % of target engaged. A Decision Tree is presented to guide researchers through the covalent drug development process. Our bioanalytical methods and the Decision Tree are applied to two approved drugs (ibrutinib and sotorasib); the most common plasma off-target, human serum albumin; three protein targets (KRAS, BTK, SOD1), and to a promising SOD1-targeting ALS drug candidates.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass spectrometry methods and mathematical PK/PD model for decision tree-guided covalent drug development\",\"authors\":\"Md Amin Hossain, Rutali R. Brahme, Brandon C. Miller, Jakal Amin, Marcela de Barros, Jaime L. Schneider, Jared R. Auclair, Carla Mattos, Qingping Wang, Nathalie Y. R. Agar, David J. Greenblatt, Roman Manetsch, Jeffrey N. Agar\",\"doi\":\"10.1038/s41467-025-56985-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covalent drug discovery efforts are growing rapidly but have major unaddressed limitations. These include high false positive rates during hit-to-lead identification; the inherent uncoupling of covalent drug concentration and effect [i.e., uncoupling of pharmacokinetics (PK) and pharmacodynamics (PD)]; and a lack of bioanalytical and modeling methods for determining PK and PD parameters. We present a covalent drug discovery workflow that addresses these limitations. Our bioanalytical methods are based upon a mass spectrometry (MS) assay that can measure the percentage of drug-target protein conjugation (% target engagement) in biological matrices. Further we develop an <u>i</u>ntact protein <u>PK/PD</u> model (<i>i</i>PK/PD) that outputs PK parameters (absorption and distribution) as well as PD parameters (mechanism of action, protein metabolic half-lives, dose, regimen, effect) based on time-dependent target engagement data. Notably, the <i>i</i>PK/PD model is applicable to any measurement (e.g., bottom-up MS and other drug binding studies) that yields % of target engaged. A Decision Tree is presented to guide researchers through the covalent drug development process. Our bioanalytical methods and the Decision Tree are applied to two approved drugs (ibrutinib and sotorasib); the most common plasma off-target, human serum albumin; three protein targets (KRAS, BTK, SOD1), and to a promising SOD1-targeting ALS drug candidates.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56985-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56985-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

共价药物的发现工作正在迅速发展,但仍有主要的未解决的局限性。这些问题包括在命中-导联识别过程中的高假阳性率;共价药物浓度和药效的固有解耦[即药代动力学(PK)和药效学(PD)的解耦];以及缺乏确定PK和PD参数的生物分析和建模方法。我们提出了一个共价药物发现工作流程,解决了这些限制。我们的生物分析方法基于质谱(MS)测定,可以测量生物基质中药物靶蛋白偶联的百分比(目标接合%)。进一步,我们开发了一个完整的蛋白质PK/PD模型(iPK/PD),该模型基于时间依赖性靶点参与数据输出PK参数(吸收和分布)以及PD参数(作用机制、蛋白质代谢半衰期、剂量、方案、效果)。值得注意的是,iPK/PD模型适用于任何产生目标参与率%的测量(例如,自下而上的质谱和其他药物结合研究)。提出了一个决策树来指导研究人员通过共价药物的开发过程。我们的生物分析方法和决策树应用于两种批准的药物(ibrutinib和sotorasib);最常见的血浆脱靶,人血清白蛋白;三个蛋白靶点(KRAS, BTK, SOD1),以及一个有希望的SOD1靶向ALS候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mass spectrometry methods and mathematical PK/PD model for decision tree-guided covalent drug development

Mass spectrometry methods and mathematical PK/PD model for decision tree-guided covalent drug development

Covalent drug discovery efforts are growing rapidly but have major unaddressed limitations. These include high false positive rates during hit-to-lead identification; the inherent uncoupling of covalent drug concentration and effect [i.e., uncoupling of pharmacokinetics (PK) and pharmacodynamics (PD)]; and a lack of bioanalytical and modeling methods for determining PK and PD parameters. We present a covalent drug discovery workflow that addresses these limitations. Our bioanalytical methods are based upon a mass spectrometry (MS) assay that can measure the percentage of drug-target protein conjugation (% target engagement) in biological matrices. Further we develop an intact protein PK/PD model (iPK/PD) that outputs PK parameters (absorption and distribution) as well as PD parameters (mechanism of action, protein metabolic half-lives, dose, regimen, effect) based on time-dependent target engagement data. Notably, the iPK/PD model is applicable to any measurement (e.g., bottom-up MS and other drug binding studies) that yields % of target engaged. A Decision Tree is presented to guide researchers through the covalent drug development process. Our bioanalytical methods and the Decision Tree are applied to two approved drugs (ibrutinib and sotorasib); the most common plasma off-target, human serum albumin; three protein targets (KRAS, BTK, SOD1), and to a promising SOD1-targeting ALS drug candidates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信