{"title":"低温锂离子电池用低温敏感材料","authors":"Yuchong Ge, Jiahe Chen, Guozheng Ma, Rongtao Huang, Fanbo Meng, Renzong Hu","doi":"10.1021/acsami.4c21441","DOIUrl":null,"url":null,"abstract":"High-energy low-temperature lithium-ion batteries (LIBs) play an important role in promoting the application of renewable energy storage in national defense construction, including deep-sea operations, civil and military applications, and space missions. Sn-based materials show intrinsic low-temperature-sensitivity properties and promising applications in the field of subfreezing energy storage and conversion. In the past decade, our group has studied the intrinsic properties and fundamental applications of Sn-based materials in low-temperature LIBs. In this spotlight, we first discuss the principles on limiting the operation performance of LIBs under cool environments, including the decreased Li-ion diffusion in electrode materials, increased viscosity of the electrolyte, and large electrochemical impedance. Then, we mainly introduce our strategies to improve the low-temperature performance of LIBs based on a series of Sn-based materials, including material phase transition regulation, interfacial structural engineering, and targeted control of the electrolyte composition. Finally, we discuss the further development and directions of low-temperature LIBs based on several aspects of extending cycle life, introducing inorganic components in the solid electrolyte interphase (SEI), and testing the low-temperature performance with large pouch cells. This feature article aims to provide insights into the unique low-temperature properties of Sn-based materials and the potential to improve the low-temperature performance of LIBs through advanced material design and engineering.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"14 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Temperature-Sensitivity Materials for Low-Temperature Lithium-Ion Batteries\",\"authors\":\"Yuchong Ge, Jiahe Chen, Guozheng Ma, Rongtao Huang, Fanbo Meng, Renzong Hu\",\"doi\":\"10.1021/acsami.4c21441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-energy low-temperature lithium-ion batteries (LIBs) play an important role in promoting the application of renewable energy storage in national defense construction, including deep-sea operations, civil and military applications, and space missions. Sn-based materials show intrinsic low-temperature-sensitivity properties and promising applications in the field of subfreezing energy storage and conversion. In the past decade, our group has studied the intrinsic properties and fundamental applications of Sn-based materials in low-temperature LIBs. In this spotlight, we first discuss the principles on limiting the operation performance of LIBs under cool environments, including the decreased Li-ion diffusion in electrode materials, increased viscosity of the electrolyte, and large electrochemical impedance. Then, we mainly introduce our strategies to improve the low-temperature performance of LIBs based on a series of Sn-based materials, including material phase transition regulation, interfacial structural engineering, and targeted control of the electrolyte composition. Finally, we discuss the further development and directions of low-temperature LIBs based on several aspects of extending cycle life, introducing inorganic components in the solid electrolyte interphase (SEI), and testing the low-temperature performance with large pouch cells. This feature article aims to provide insights into the unique low-temperature properties of Sn-based materials and the potential to improve the low-temperature performance of LIBs through advanced material design and engineering.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c21441\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21441","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-Temperature-Sensitivity Materials for Low-Temperature Lithium-Ion Batteries
High-energy low-temperature lithium-ion batteries (LIBs) play an important role in promoting the application of renewable energy storage in national defense construction, including deep-sea operations, civil and military applications, and space missions. Sn-based materials show intrinsic low-temperature-sensitivity properties and promising applications in the field of subfreezing energy storage and conversion. In the past decade, our group has studied the intrinsic properties and fundamental applications of Sn-based materials in low-temperature LIBs. In this spotlight, we first discuss the principles on limiting the operation performance of LIBs under cool environments, including the decreased Li-ion diffusion in electrode materials, increased viscosity of the electrolyte, and large electrochemical impedance. Then, we mainly introduce our strategies to improve the low-temperature performance of LIBs based on a series of Sn-based materials, including material phase transition regulation, interfacial structural engineering, and targeted control of the electrolyte composition. Finally, we discuss the further development and directions of low-temperature LIBs based on several aspects of extending cycle life, introducing inorganic components in the solid electrolyte interphase (SEI), and testing the low-temperature performance with large pouch cells. This feature article aims to provide insights into the unique low-temperature properties of Sn-based materials and the potential to improve the low-temperature performance of LIBs through advanced material design and engineering.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.