IF 0.9 1区 数学 Q2 MATHEMATICS
Régis de la Bretèche, Daniel Fiorilli, Florent Jouve
{"title":"Moments in the Chebotarev density theorem: general class functions","authors":"Régis de la Bretèche, Daniel Fiorilli, Florent Jouve","doi":"10.2140/ant.2025.19.481","DOIUrl":null,"url":null,"abstract":"<p>We find lower bounds on higher moments of the error term in the Chebotarev density theorem. Inspired by the work of Bellaïche, we consider general class functions and prove bounds which depend on norms associated to these functions. Our bounds also involve the ramification and Galois theoretical information of the underlying extension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi><mo>∕</mo><mi>K</mi></math>. Under a natural condition on class functions (which appeared in earlier work), we obtain that those moments are at least Gaussian. The key tools in our approach are the application of positivity in the explicit formula followed by combinatorics on zeros of Artin <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions (which generalize previous work), as well as precise bounds on Artin conductors. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"64 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.481","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们发现了切博塔列夫密度定理中误差项的高阶矩的下界。受贝拉热研究的启发,我们考虑了一般类函数,并证明了取决于与这些函数相关的规范的界值。我们的边界还涉及底层扩展 L∕K 的斜率和伽罗瓦理论信息。根据类函数的一个自然条件(出现在早期的工作中),我们得到这些矩至少是高斯矩。我们方法中的关键工具是在显式中应用正性,然后对阿尔丁 L 函数的零点进行组合(这是对先前工作的概括),以及对阿尔丁导体进行精确约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moments in the Chebotarev density theorem: general class functions

We find lower bounds on higher moments of the error term in the Chebotarev density theorem. Inspired by the work of Bellaïche, we consider general class functions and prove bounds which depend on norms associated to these functions. Our bounds also involve the ramification and Galois theoretical information of the underlying extension LK. Under a natural condition on class functions (which appeared in earlier work), we obtain that those moments are at least Gaussian. The key tools in our approach are the application of positivity in the explicit formula followed by combinatorics on zeros of Artin L-functions (which generalize previous work), as well as precise bounds on Artin conductors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信