Yan Zhao, Yu Long, Wenwen Liu, Zhenyong Han, Yuteng Cui, Zhijun Li, Wanglei Wang, Zhiyao Duan and Xiaogang Fu
{"title":"fepb掺杂RuO2偶联非晶/晶异相的高效酸性析氧反应","authors":"Yan Zhao, Yu Long, Wenwen Liu, Zhenyong Han, Yuteng Cui, Zhijun Li, Wanglei Wang, Zhiyao Duan and Xiaogang Fu","doi":"10.1039/D4TA09261A","DOIUrl":null,"url":null,"abstract":"<p >The rational design of efficient ruthenium-based materials for the oxygen evolution reaction (OER) is promising for developing proton exchange membrane water electrolysis (PEMWE). Herein, an FePb-doped RuO<small><sub>2</sub></small> catalyst associated with an amorphous/crystalline heterostructure is presented for efficient acidic OER. Owing to the dual doped alien atoms and the heterophase, the synthesized FePb-RuO<small><sub>2</sub></small> exhibits a small overpotential of 194 mV at 10 mA cm<small><sup>−2</sup></small> in 0.5 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small>. For application in PEMWE, the FePb-RuO<small><sub>2</sub></small> based electrolyser requires only 1.59 V to reach 500 mA cm<small><sup>−2</sup></small> and has stable operation for 100 h at 100 mA cm<small><sup>−2</sup></small>. The abundant amorphous/crystalline heterostructure not only provides substantial defects and active sites but also inhibits the conversion of Ru<small><sup>4+</sup></small> to unstable high valence states, improving OER activity and stability. Density functional theory simulation indicates that Fe dopants can weaken the adsorption strength of OOH* on Ru active sites, thereby enhancing OER activity. In contrast, Pb dopants can increase Ru reconstruction's activation energy, thus providing superior OER stability.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 12","pages":" 8474-8483"},"PeriodicalIF":9.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An FePb-doped RuO2 coupled amorphous/crystalline heterophase for efficient acidic oxygen evolution reaction†\",\"authors\":\"Yan Zhao, Yu Long, Wenwen Liu, Zhenyong Han, Yuteng Cui, Zhijun Li, Wanglei Wang, Zhiyao Duan and Xiaogang Fu\",\"doi\":\"10.1039/D4TA09261A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The rational design of efficient ruthenium-based materials for the oxygen evolution reaction (OER) is promising for developing proton exchange membrane water electrolysis (PEMWE). Herein, an FePb-doped RuO<small><sub>2</sub></small> catalyst associated with an amorphous/crystalline heterostructure is presented for efficient acidic OER. Owing to the dual doped alien atoms and the heterophase, the synthesized FePb-RuO<small><sub>2</sub></small> exhibits a small overpotential of 194 mV at 10 mA cm<small><sup>−2</sup></small> in 0.5 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small>. For application in PEMWE, the FePb-RuO<small><sub>2</sub></small> based electrolyser requires only 1.59 V to reach 500 mA cm<small><sup>−2</sup></small> and has stable operation for 100 h at 100 mA cm<small><sup>−2</sup></small>. The abundant amorphous/crystalline heterostructure not only provides substantial defects and active sites but also inhibits the conversion of Ru<small><sup>4+</sup></small> to unstable high valence states, improving OER activity and stability. Density functional theory simulation indicates that Fe dopants can weaken the adsorption strength of OOH* on Ru active sites, thereby enhancing OER activity. In contrast, Pb dopants can increase Ru reconstruction's activation energy, thus providing superior OER stability.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 12\",\"pages\":\" 8474-8483\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09261a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09261a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
合理设计用于氧进化反应(OER)的高效钌基材料对于开发质子交换膜水电解法(PEMWE)大有可为。本文介绍了一种掺杂 FePb 的 RuO2 催化剂和一种非晶/晶体异质结构,用于高效酸性 OER。由于存在双掺杂异质原子和异相,合成的 FePb-RuO2 在 0.5 M H2SO4 中 10 mA cm-2 的过电位仅为 194 mV。在 PEMWE 中的应用中,基于 FePb-RuO2 的电解槽只需 1.59 V 即可达到 500 mA cm-2,并可在 100 mA cm-2 下稳定运行 100 h。丰富的非晶/晶体异质结构不仅提供了大量的缺陷和活性位点,还抑制了 Ru4+ 向不稳定的高价态转化,提高了 OER 的活性和稳定性。密度泛函理论模拟表明,铁掺杂物可以削弱 OOH* 在 Ru 活性位点上的吸附强度,从而提高 OER 活性。相反,掺杂铅可以提高 Ru 重构的活化能,从而提供卓越的 OER 稳定性。
An FePb-doped RuO2 coupled amorphous/crystalline heterophase for efficient acidic oxygen evolution reaction†
The rational design of efficient ruthenium-based materials for the oxygen evolution reaction (OER) is promising for developing proton exchange membrane water electrolysis (PEMWE). Herein, an FePb-doped RuO2 catalyst associated with an amorphous/crystalline heterostructure is presented for efficient acidic OER. Owing to the dual doped alien atoms and the heterophase, the synthesized FePb-RuO2 exhibits a small overpotential of 194 mV at 10 mA cm−2 in 0.5 M H2SO4. For application in PEMWE, the FePb-RuO2 based electrolyser requires only 1.59 V to reach 500 mA cm−2 and has stable operation for 100 h at 100 mA cm−2. The abundant amorphous/crystalline heterostructure not only provides substantial defects and active sites but also inhibits the conversion of Ru4+ to unstable high valence states, improving OER activity and stability. Density functional theory simulation indicates that Fe dopants can weaken the adsorption strength of OOH* on Ru active sites, thereby enhancing OER activity. In contrast, Pb dopants can increase Ru reconstruction's activation energy, thus providing superior OER stability.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.