{"title":"一种可注射的盐酸壳聚糖-海藻酸钠水凝胶佐剂,能激发强效体液免疫和细胞免疫","authors":"Yonghao Lai, Sibo Wang, Xiwen Shen, Ruicheng Qi, Tingshu Liu, Fangyuan Du, Yujia YuHe, Beiliang Miao, Jingbo Zhai, Yi Zhang, Shiwei Liu, Zeliang Chen","doi":"10.1021/acsami.4c15189","DOIUrl":null,"url":null,"abstract":"Adjuvants can enhance the immune effects of vaccines. Currently, the most commonly used and validated are aluminum and oil-emulsion adjuvants. However, these adjuvants are not without flaws; for instance, aluminum adjuvants can cause adverse reactions and irritation at the injection site. Consequently, the development of new, safe, and effective adjuvants remains a prominent topic in vaccine research. In this study, we synthesized a composite hydrogel by combining sodium alginate (SA) and the chitosan derivative chitosan hydrochloride (CHCL) to explore the feasibility of this polymer composite hydrogel as a novel immunoadjuvant. Our results indicate that this hydrogel material possesses good biocompatibility and antibacterial properties, is easily injectable, and locally initiates vaccine responses by stimulating the phagocytosis of protein antigens by dendritic cells (DCs). Additionally, they offer sustained exposure to vaccine antigens. After administration, a transient inflammatory niche is created to prolong immune system activation. Importantly, our study demonstrated that the CHCL-SA hydrogel loaded with antigens effectively stimulated the body to produce a humoral immune response and enhance the maturation of the CD8+ T lymphocyte subset. In murine tumor challenge experiments, the CHCL-SA supplemented antigen group significantly inhibited tumor cell growth and improved mouse survival rates. In summary, we developed an injectable CHCL-SA hydrogel adjuvant with great potential for enhancing the efficacy of vaccines.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"92 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Injectable Chitosan Hydrochloride-Sodium Alginate Hydrogel Adjuvant Capable of Eliciting Potent Humoral and Cellular Immunity\",\"authors\":\"Yonghao Lai, Sibo Wang, Xiwen Shen, Ruicheng Qi, Tingshu Liu, Fangyuan Du, Yujia YuHe, Beiliang Miao, Jingbo Zhai, Yi Zhang, Shiwei Liu, Zeliang Chen\",\"doi\":\"10.1021/acsami.4c15189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adjuvants can enhance the immune effects of vaccines. Currently, the most commonly used and validated are aluminum and oil-emulsion adjuvants. However, these adjuvants are not without flaws; for instance, aluminum adjuvants can cause adverse reactions and irritation at the injection site. Consequently, the development of new, safe, and effective adjuvants remains a prominent topic in vaccine research. In this study, we synthesized a composite hydrogel by combining sodium alginate (SA) and the chitosan derivative chitosan hydrochloride (CHCL) to explore the feasibility of this polymer composite hydrogel as a novel immunoadjuvant. Our results indicate that this hydrogel material possesses good biocompatibility and antibacterial properties, is easily injectable, and locally initiates vaccine responses by stimulating the phagocytosis of protein antigens by dendritic cells (DCs). Additionally, they offer sustained exposure to vaccine antigens. After administration, a transient inflammatory niche is created to prolong immune system activation. Importantly, our study demonstrated that the CHCL-SA hydrogel loaded with antigens effectively stimulated the body to produce a humoral immune response and enhance the maturation of the CD8+ T lymphocyte subset. In murine tumor challenge experiments, the CHCL-SA supplemented antigen group significantly inhibited tumor cell growth and improved mouse survival rates. In summary, we developed an injectable CHCL-SA hydrogel adjuvant with great potential for enhancing the efficacy of vaccines.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c15189\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15189","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
An Injectable Chitosan Hydrochloride-Sodium Alginate Hydrogel Adjuvant Capable of Eliciting Potent Humoral and Cellular Immunity
Adjuvants can enhance the immune effects of vaccines. Currently, the most commonly used and validated are aluminum and oil-emulsion adjuvants. However, these adjuvants are not without flaws; for instance, aluminum adjuvants can cause adverse reactions and irritation at the injection site. Consequently, the development of new, safe, and effective adjuvants remains a prominent topic in vaccine research. In this study, we synthesized a composite hydrogel by combining sodium alginate (SA) and the chitosan derivative chitosan hydrochloride (CHCL) to explore the feasibility of this polymer composite hydrogel as a novel immunoadjuvant. Our results indicate that this hydrogel material possesses good biocompatibility and antibacterial properties, is easily injectable, and locally initiates vaccine responses by stimulating the phagocytosis of protein antigens by dendritic cells (DCs). Additionally, they offer sustained exposure to vaccine antigens. After administration, a transient inflammatory niche is created to prolong immune system activation. Importantly, our study demonstrated that the CHCL-SA hydrogel loaded with antigens effectively stimulated the body to produce a humoral immune response and enhance the maturation of the CD8+ T lymphocyte subset. In murine tumor challenge experiments, the CHCL-SA supplemented antigen group significantly inhibited tumor cell growth and improved mouse survival rates. In summary, we developed an injectable CHCL-SA hydrogel adjuvant with great potential for enhancing the efficacy of vaccines.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.