胆固醇24-羟化酶CYP46A1促进帕金森病α-突触核蛋白病理。

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-02-18 eCollection Date: 2025-02-01 DOI:10.1371/journal.pbio.3002974
Lijun Dai, Jiannan Wang, Lanxia Meng, Xingyu Zhang, Tingting Xiao, Min Deng, Guiqin Chen, Jing Xiong, Wei Ke, Zhengyuan Hong, Lihong Bu, Zhentao Zhang
{"title":"胆固醇24-羟化酶CYP46A1促进帕金森病α-突触核蛋白病理。","authors":"Lijun Dai, Jiannan Wang, Lanxia Meng, Xingyu Zhang, Tingting Xiao, Min Deng, Guiqin Chen, Jing Xiong, Wei Ke, Zhengyuan Hong, Lihong Bu, Zhentao Zhang","doi":"10.1371/journal.pbio.3002974","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disease characterized by the death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies that are composed of aggregated α-synuclein (α-Syn). However, the factors that regulate α-Syn pathology and nigrostriatal dopaminergic degeneration remain poorly understood. Previous studies demonstrate cholesterol 24-hydroxylase (CYP46A1) increases the risk for PD. Moreover, 24-hydroxycholesterol (24-OHC), a brain-specific oxysterol that is catalyzed by CYP46A1, is elevated in the cerebrospinal fluid of PD patients. Herein, we show that the levels of CYP46A1 and 24-OHC are elevated in PD patients and increase with age in a mouse model. Overexpression of CYP46A1 intensifies α-Syn pathology, whereas genetic removal of CYP46A1 attenuates α-Syn neurotoxicity and nigrostriatal dopaminergic degeneration in the brain. Moreover, supplementation with exogenous 24-OHC exacerbates the mitochondrial dysfunction induced by α-Syn fibrils. Intracerebral injection of 24-OHC enhances the spread of α-Syn pathology and dopaminergic neurodegeneration via elevated X-box binding protein 1 (XBP1) and lymphocyte-activation gene 3 (LAG3) levels. Thus, elevated CYP46A1 and 24-OHC promote neurotoxicity and the spread of α-Syn via the XBP1-LAG3 axis. Strategies aimed at inhibiting the CYP46A1-24-OHC axis and LAG3 could hold promise as disease-modifying therapies for PD.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 2","pages":"e3002974"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835240/pdf/","citationCount":"0","resultStr":"{\"title\":\"The cholesterol 24-hydroxylase CYP46A1 promotes α-synuclein pathology in Parkinson's disease.\",\"authors\":\"Lijun Dai, Jiannan Wang, Lanxia Meng, Xingyu Zhang, Tingting Xiao, Min Deng, Guiqin Chen, Jing Xiong, Wei Ke, Zhengyuan Hong, Lihong Bu, Zhentao Zhang\",\"doi\":\"10.1371/journal.pbio.3002974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a neurodegenerative disease characterized by the death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies that are composed of aggregated α-synuclein (α-Syn). However, the factors that regulate α-Syn pathology and nigrostriatal dopaminergic degeneration remain poorly understood. Previous studies demonstrate cholesterol 24-hydroxylase (CYP46A1) increases the risk for PD. Moreover, 24-hydroxycholesterol (24-OHC), a brain-specific oxysterol that is catalyzed by CYP46A1, is elevated in the cerebrospinal fluid of PD patients. Herein, we show that the levels of CYP46A1 and 24-OHC are elevated in PD patients and increase with age in a mouse model. Overexpression of CYP46A1 intensifies α-Syn pathology, whereas genetic removal of CYP46A1 attenuates α-Syn neurotoxicity and nigrostriatal dopaminergic degeneration in the brain. Moreover, supplementation with exogenous 24-OHC exacerbates the mitochondrial dysfunction induced by α-Syn fibrils. Intracerebral injection of 24-OHC enhances the spread of α-Syn pathology and dopaminergic neurodegeneration via elevated X-box binding protein 1 (XBP1) and lymphocyte-activation gene 3 (LAG3) levels. Thus, elevated CYP46A1 and 24-OHC promote neurotoxicity and the spread of α-Syn via the XBP1-LAG3 axis. Strategies aimed at inhibiting the CYP46A1-24-OHC axis and LAG3 could hold promise as disease-modifying therapies for PD.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 2\",\"pages\":\"e3002974\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835240/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002974\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002974","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种神经退行性疾病,其特征是黑质多巴胺能神经元死亡,形成由聚集性α-突触核蛋白(α-Syn)组成的路易小体。然而,调节α-Syn病理和黑质纹状体多巴胺能变性的因素仍然知之甚少。先前的研究表明,胆固醇24-羟化酶(CYP46A1)会增加帕金森病的风险。此外,24-羟基胆固醇(24-OHC),一种由CYP46A1催化的脑特异性氧固醇,在PD患者脑脊液中升高。在此,我们发现在小鼠模型中,CYP46A1和24-OHC水平在PD患者中升高,并随着年龄的增长而增加。CYP46A1的过表达会加剧α-Syn的病理变化,而基因去除CYP46A1则会减弱α-Syn的神经毒性和脑内黑质纹状体多巴胺能变性。此外,补充外源性24-OHC会加剧α-Syn原纤维诱导的线粒体功能障碍。脑内注射24-OHC通过提高X-box结合蛋白1 (XBP1)和淋巴细胞活化基因3 (LAG3)水平,增强α-Syn病理和多巴胺能神经变性的扩散。因此,CYP46A1和24-OHC的升高通过XBP1-LAG3轴促进神经毒性和α-Syn的传播。旨在抑制CYP46A1-24-OHC轴和LAG3的策略有望成为PD的疾病改善疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The cholesterol 24-hydroxylase CYP46A1 promotes α-synuclein pathology in Parkinson's disease.

Parkinson's disease (PD) is a neurodegenerative disease characterized by the death of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies that are composed of aggregated α-synuclein (α-Syn). However, the factors that regulate α-Syn pathology and nigrostriatal dopaminergic degeneration remain poorly understood. Previous studies demonstrate cholesterol 24-hydroxylase (CYP46A1) increases the risk for PD. Moreover, 24-hydroxycholesterol (24-OHC), a brain-specific oxysterol that is catalyzed by CYP46A1, is elevated in the cerebrospinal fluid of PD patients. Herein, we show that the levels of CYP46A1 and 24-OHC are elevated in PD patients and increase with age in a mouse model. Overexpression of CYP46A1 intensifies α-Syn pathology, whereas genetic removal of CYP46A1 attenuates α-Syn neurotoxicity and nigrostriatal dopaminergic degeneration in the brain. Moreover, supplementation with exogenous 24-OHC exacerbates the mitochondrial dysfunction induced by α-Syn fibrils. Intracerebral injection of 24-OHC enhances the spread of α-Syn pathology and dopaminergic neurodegeneration via elevated X-box binding protein 1 (XBP1) and lymphocyte-activation gene 3 (LAG3) levels. Thus, elevated CYP46A1 and 24-OHC promote neurotoxicity and the spread of α-Syn via the XBP1-LAG3 axis. Strategies aimed at inhibiting the CYP46A1-24-OHC axis and LAG3 could hold promise as disease-modifying therapies for PD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信