考虑举重条件和个人特征的机器学习增强背部肌肉力量预测。

IF 1.6 4区 医学 Q3 ERGONOMICS
Kyung-Sun Lee, Jaejin Hwang, Jiyeon Ha, Jinwon Lee
{"title":"考虑举重条件和个人特征的机器学习增强背部肌肉力量预测。","authors":"Kyung-Sun Lee, Jaejin Hwang, Jiyeon Ha, Jinwon Lee","doi":"10.1080/10803548.2025.2454131","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated factors influencing back muscle strength, focusing on sex, forearm posture and lifting height. Lower back pain, prevalent in industries involving manual materials handling, is closely linked to back muscle strength. The study analyzed data from 98 participants using machine learning models such as linear regression, random forest and multilayer perceptron (MLP). Results showed significant effects of sex, forearm posture and lifting height on back strength. Males demonstrated higher strength than females, and a pronated forearm posture increased strength by 10% compared to supination. The MLP model achieved the highest predictive accuracy (<i>r</i> = 0.896), outperforming other models. These findings offer valuable insights for designing ergonomic workstations and personalized rehabilitation programs, reducing the risk of work-related musculoskeletal disorders. By addressing critical factors, this study contributes to optimizing occupational safety and healthcare strategies.</p>","PeriodicalId":47704,"journal":{"name":"International Journal of Occupational Safety and Ergonomics","volume":" ","pages":"1-7"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-enhanced back muscle strength prediction considering lifting condition and individual characteristics.\",\"authors\":\"Kyung-Sun Lee, Jaejin Hwang, Jiyeon Ha, Jinwon Lee\",\"doi\":\"10.1080/10803548.2025.2454131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated factors influencing back muscle strength, focusing on sex, forearm posture and lifting height. Lower back pain, prevalent in industries involving manual materials handling, is closely linked to back muscle strength. The study analyzed data from 98 participants using machine learning models such as linear regression, random forest and multilayer perceptron (MLP). Results showed significant effects of sex, forearm posture and lifting height on back strength. Males demonstrated higher strength than females, and a pronated forearm posture increased strength by 10% compared to supination. The MLP model achieved the highest predictive accuracy (<i>r</i> = 0.896), outperforming other models. These findings offer valuable insights for designing ergonomic workstations and personalized rehabilitation programs, reducing the risk of work-related musculoskeletal disorders. By addressing critical factors, this study contributes to optimizing occupational safety and healthcare strategies.</p>\",\"PeriodicalId\":47704,\"journal\":{\"name\":\"International Journal of Occupational Safety and Ergonomics\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Occupational Safety and Ergonomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10803548.2025.2454131\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Occupational Safety and Ergonomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10803548.2025.2454131","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了影响背部肌肉力量的因素,重点是性别、前臂姿势和举重高度。腰痛普遍存在于涉及手工材料搬运的行业中,与背部肌肉力量密切相关。该研究使用线性回归、随机森林和多层感知器(MLP)等机器学习模型分析了来自98名参与者的数据。结果显示,性别、前臂姿势和举高对背部力量有显著影响。男性表现出比女性更高的力量,前臂内旋姿势比旋后姿势增加10%的力量。MLP模型的预测准确率最高(r = 0.896),优于其他模型。这些发现为设计符合人体工程学的工作站和个性化康复计划提供了有价值的见解,降低了与工作相关的肌肉骨骼疾病的风险。通过解决关键因素,本研究有助于优化职业安全和医疗保健策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-enhanced back muscle strength prediction considering lifting condition and individual characteristics.

This study investigated factors influencing back muscle strength, focusing on sex, forearm posture and lifting height. Lower back pain, prevalent in industries involving manual materials handling, is closely linked to back muscle strength. The study analyzed data from 98 participants using machine learning models such as linear regression, random forest and multilayer perceptron (MLP). Results showed significant effects of sex, forearm posture and lifting height on back strength. Males demonstrated higher strength than females, and a pronated forearm posture increased strength by 10% compared to supination. The MLP model achieved the highest predictive accuracy (r = 0.896), outperforming other models. These findings offer valuable insights for designing ergonomic workstations and personalized rehabilitation programs, reducing the risk of work-related musculoskeletal disorders. By addressing critical factors, this study contributes to optimizing occupational safety and healthcare strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
8.30%
发文量
152
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信