大豆蛋白水解物和还原糖的美拉德反应产物:结构和风味。

Jiaqi Hao, Xiaoying Zhang, Ziwei Wang, Qingkui Zhao, Shuang Zhang, Yang Li
{"title":"大豆蛋白水解物和还原糖的美拉德反应产物:结构和风味。","authors":"Jiaqi Hao, Xiaoying Zhang, Ziwei Wang, Qingkui Zhao, Shuang Zhang, Yang Li","doi":"10.1016/j.foodres.2025.115790","DOIUrl":null,"url":null,"abstract":"<p><p>Maillard reaction products (MRPs) were prepared at high temperatures using soybean protein hydrolysates (SPH) and reducing pentose (xylose and arabinose), hexose (galactose and glucose), and disaccharide (maltose), and their potential as flavoring in plant protein foods was evaluated. The results indicated that, after sugar was involved in the reaction, the unfolding of proteins enabled aromatic amino acid residues to enter a more hydrophobic environment, contributing to the reduction of bitterness in MRPs and formation of caramelization. This effect was partially attributed to the interaction forces, hydrogen bonds and van der Waals forces, that existed between the sugars and SPH involved in Maillard reaction. More basic amino acid residues interacted with pentose during the reaction, which exhibited faster reaction rate and promoted the formation of pyrazines and oxygen containing compounds, thereby contributing to meaty, roasted and caramelized flavors. Trimethyl pyrazine, 3-ethyl-2,5-dimethylpyrazine, 2-methylpyrazine, and 2-heptanone were the most abundant in pentose MRPs, and these volatile compounds were positively correlated with umami and richness. Overall, MRPs prepared with arabinose may serve as a potential meaty flavoring with notable umami, and hexose contributed to the enrichment of nutty flavor profiles, while the MRPs formed by disaccharide exhibited the characteristics of superior fruity aromas. MRPs from different reducing sugar may be used to develop different food ingredients.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"202 ","pages":"115790"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maillard reaction products of soybean protein hydrolysates and reducing sugar: Structure and flavor insights.\",\"authors\":\"Jiaqi Hao, Xiaoying Zhang, Ziwei Wang, Qingkui Zhao, Shuang Zhang, Yang Li\",\"doi\":\"10.1016/j.foodres.2025.115790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maillard reaction products (MRPs) were prepared at high temperatures using soybean protein hydrolysates (SPH) and reducing pentose (xylose and arabinose), hexose (galactose and glucose), and disaccharide (maltose), and their potential as flavoring in plant protein foods was evaluated. The results indicated that, after sugar was involved in the reaction, the unfolding of proteins enabled aromatic amino acid residues to enter a more hydrophobic environment, contributing to the reduction of bitterness in MRPs and formation of caramelization. This effect was partially attributed to the interaction forces, hydrogen bonds and van der Waals forces, that existed between the sugars and SPH involved in Maillard reaction. More basic amino acid residues interacted with pentose during the reaction, which exhibited faster reaction rate and promoted the formation of pyrazines and oxygen containing compounds, thereby contributing to meaty, roasted and caramelized flavors. Trimethyl pyrazine, 3-ethyl-2,5-dimethylpyrazine, 2-methylpyrazine, and 2-heptanone were the most abundant in pentose MRPs, and these volatile compounds were positively correlated with umami and richness. Overall, MRPs prepared with arabinose may serve as a potential meaty flavoring with notable umami, and hexose contributed to the enrichment of nutty flavor profiles, while the MRPs formed by disaccharide exhibited the characteristics of superior fruity aromas. MRPs from different reducing sugar may be used to develop different food ingredients.</p>\",\"PeriodicalId\":94010,\"journal\":{\"name\":\"Food research international (Ottawa, Ont.)\",\"volume\":\"202 \",\"pages\":\"115790\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food research international (Ottawa, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodres.2025.115790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.115790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以大豆蛋白水解物(SPH)为原料,通过还原戊糖(木糖和阿拉伯糖)、己糖(半乳糖和葡萄糖)和双糖(麦芽糖),在高温下制备美拉德反应产物(MRPs),并对其作为植物蛋白食品调味品的潜力进行了评价。结果表明,糖参与反应后,蛋白质的展开使芳香氨基酸残基进入更疏水的环境,有助于MRPs苦味的减少和焦糖化的形成。这种效应部分归因于美拉德反应中糖和SPH之间存在的相互作用力,氢键和范德华力。在反应过程中,更多的碱性氨基酸残基与戊糖相互作用,反应速度更快,促进吡嗪和含氧化合物的形成,从而产生肉味、烤味和焦糖味。戊糖MRPs中含量最高的是三甲基吡嗪、3-乙基-2,5-二甲基吡嗪、2-甲基吡嗪和2-庚酮,这些挥发性化合物与鲜度和丰富度呈正相关。综上所述,阿拉伯糖制备的MRPs可能是一种具有显著鲜味的潜在肉类调味料,己糖有助于丰富坚果风味特征,而双糖制备的MRPs则具有优越的水果香味特征。来自不同还原糖的MRPs可用于开发不同的食品成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maillard reaction products of soybean protein hydrolysates and reducing sugar: Structure and flavor insights.

Maillard reaction products (MRPs) were prepared at high temperatures using soybean protein hydrolysates (SPH) and reducing pentose (xylose and arabinose), hexose (galactose and glucose), and disaccharide (maltose), and their potential as flavoring in plant protein foods was evaluated. The results indicated that, after sugar was involved in the reaction, the unfolding of proteins enabled aromatic amino acid residues to enter a more hydrophobic environment, contributing to the reduction of bitterness in MRPs and formation of caramelization. This effect was partially attributed to the interaction forces, hydrogen bonds and van der Waals forces, that existed between the sugars and SPH involved in Maillard reaction. More basic amino acid residues interacted with pentose during the reaction, which exhibited faster reaction rate and promoted the formation of pyrazines and oxygen containing compounds, thereby contributing to meaty, roasted and caramelized flavors. Trimethyl pyrazine, 3-ethyl-2,5-dimethylpyrazine, 2-methylpyrazine, and 2-heptanone were the most abundant in pentose MRPs, and these volatile compounds were positively correlated with umami and richness. Overall, MRPs prepared with arabinose may serve as a potential meaty flavoring with notable umami, and hexose contributed to the enrichment of nutty flavor profiles, while the MRPs formed by disaccharide exhibited the characteristics of superior fruity aromas. MRPs from different reducing sugar may be used to develop different food ingredients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信