评估Skellytour对全身CT图像的自动骨骼分割。

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Daniel C Mann, Michael W Rutherford, Phillip Farmer, Joshua M Eichhorn, Fathima Fijula Palot Manzil, Christopher P Wardell
{"title":"评估Skellytour对全身CT图像的自动骨骼分割。","authors":"Daniel C Mann, Michael W Rutherford, Phillip Farmer, Joshua M Eichhorn, Fathima Fijula Palot Manzil, Christopher P Wardell","doi":"10.1148/ryai.240050","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To construct and evaluate the performance of a machine learning model for bone segmentation using whole-body CT images. Materials and Methods In this retrospective study, whole-body CT scans (from June 2010 to January 2018) from 90 patients (mean age, 61 years ± 9 [SD]; 45 male, 45 female) with multiple myeloma were manually segmented using 60 labels and subsegmented into cortical and trabecular bone. Segmentations were verified by board-certified radiology and nuclear medicine physicians. The impacts of isotropy, resolution, multiple labeling schemes, and postprocessing were assessed. Model performance was assessed on internal and external test datasets (362 scans) and benchmarked against the TotalSegmentator segmentation model. Performance was assessed using Dice similarity coefficient (DSC), normalized surface distance (NSD), and manual inspection. Results Skellytour achieved consistently high segmentation performance on the internal dataset (DSC: 0.94, NSD: 0.99) and two external datasets (DSC: 0.94, 0.96; NSD: 0.999, 1.0), outperforming TotalSegmentator on the first two datasets. Subsegmentation performance was also high (DSC: 0.95, NSD: 0.995). Skellytour produced finely detailed segmentations, even in low-density bones. Conclusion The study demonstrates that Skellytour is an accurate and generalizable bone segmentation and subsegmentation model for CT data; it is available as a Python package via GitHub <i>(https://github.com/cpwardell/Skellytour)</i>. <b>Keywords:</b> CT, Informatics, Skeletal-Axial, Demineralization-Bone, Comparative Studies, Segmentation, Supervised Learning, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also commentary by Khosravi and Rouzrokh in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240050"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950879/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating Skellytour for Automated Skeleton Segmentation from Whole-Body CT Images.\",\"authors\":\"Daniel C Mann, Michael W Rutherford, Phillip Farmer, Joshua M Eichhorn, Fathima Fijula Palot Manzil, Christopher P Wardell\",\"doi\":\"10.1148/ryai.240050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To construct and evaluate the performance of a machine learning model for bone segmentation using whole-body CT images. Materials and Methods In this retrospective study, whole-body CT scans (from June 2010 to January 2018) from 90 patients (mean age, 61 years ± 9 [SD]; 45 male, 45 female) with multiple myeloma were manually segmented using 60 labels and subsegmented into cortical and trabecular bone. Segmentations were verified by board-certified radiology and nuclear medicine physicians. The impacts of isotropy, resolution, multiple labeling schemes, and postprocessing were assessed. Model performance was assessed on internal and external test datasets (362 scans) and benchmarked against the TotalSegmentator segmentation model. Performance was assessed using Dice similarity coefficient (DSC), normalized surface distance (NSD), and manual inspection. Results Skellytour achieved consistently high segmentation performance on the internal dataset (DSC: 0.94, NSD: 0.99) and two external datasets (DSC: 0.94, 0.96; NSD: 0.999, 1.0), outperforming TotalSegmentator on the first two datasets. Subsegmentation performance was also high (DSC: 0.95, NSD: 0.995). Skellytour produced finely detailed segmentations, even in low-density bones. Conclusion The study demonstrates that Skellytour is an accurate and generalizable bone segmentation and subsegmentation model for CT data; it is available as a Python package via GitHub <i>(https://github.com/cpwardell/Skellytour)</i>. <b>Keywords:</b> CT, Informatics, Skeletal-Axial, Demineralization-Bone, Comparative Studies, Segmentation, Supervised Learning, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also commentary by Khosravi and Rouzrokh in this issue.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":\" \",\"pages\":\"e240050\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950879/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.240050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

“刚刚接受”的论文经过了全面的同行评审,并已被接受发表在《放射学:人工智能》杂志上。这篇文章将经过编辑,布局和校样审查,然后在其最终版本出版。请注意,在最终编辑文章的制作过程中,可能会发现可能影响内容的错误。目的构建并评价基于全身CT图像的骨分割机器学习模型的性能。材料与方法在这项回顾性研究中,90例患者(平均年龄61±[SD] 9岁;45例(男45例,女45例)多发性骨髓瘤患者使用60个标签进行手工分割,并将其亚分割为皮质骨和小梁骨。分割由委员会认证的放射学和核医学医生进行验证。评估了各向同性、分辨率、多种标记方案和后处理的影响。模型性能在内部和外部测试数据集(n = 362次扫描)上进行评估,并针对TotalSegmentator分割模型进行基准测试。使用Dice相似系数(DSC)、归一化表面距离(NSD)和人工检查来评估性能。结果Skellytour在内部数据集(DSC: 0.94, NSD: 0.99)和两个外部数据集(DSC: 0.94, 0.96, NSD: 0.999, 1.0)上取得了一致的高分割性能,优于前两个数据集上的TotalSegmentator。细分性能也很高(DSC: 0.95, NSD: 0.995)。即使在低密度的骨骼中,Skellytour也能产生精细的分割。研究表明,Skellytour是一种准确、通用的CT数据骨分割和亚分割模型,可以通过GitHub (https://github.com/cpwardell/Skellytour)获得Python包。在CC BY 4.0许可下发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Skellytour for Automated Skeleton Segmentation from Whole-Body CT Images.

Purpose To construct and evaluate the performance of a machine learning model for bone segmentation using whole-body CT images. Materials and Methods In this retrospective study, whole-body CT scans (from June 2010 to January 2018) from 90 patients (mean age, 61 years ± 9 [SD]; 45 male, 45 female) with multiple myeloma were manually segmented using 60 labels and subsegmented into cortical and trabecular bone. Segmentations were verified by board-certified radiology and nuclear medicine physicians. The impacts of isotropy, resolution, multiple labeling schemes, and postprocessing were assessed. Model performance was assessed on internal and external test datasets (362 scans) and benchmarked against the TotalSegmentator segmentation model. Performance was assessed using Dice similarity coefficient (DSC), normalized surface distance (NSD), and manual inspection. Results Skellytour achieved consistently high segmentation performance on the internal dataset (DSC: 0.94, NSD: 0.99) and two external datasets (DSC: 0.94, 0.96; NSD: 0.999, 1.0), outperforming TotalSegmentator on the first two datasets. Subsegmentation performance was also high (DSC: 0.95, NSD: 0.995). Skellytour produced finely detailed segmentations, even in low-density bones. Conclusion The study demonstrates that Skellytour is an accurate and generalizable bone segmentation and subsegmentation model for CT data; it is available as a Python package via GitHub (https://github.com/cpwardell/Skellytour). Keywords: CT, Informatics, Skeletal-Axial, Demineralization-Bone, Comparative Studies, Segmentation, Supervised Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. Published under a CC BY 4.0 license. See also commentary by Khosravi and Rouzrokh in this issue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信