小浮子(Lemna minor)和淡水贻贝(Anodonta cygnea)作为生物过滤器与过滤系统相结合,在小型RAS系统中维持鳟鱼幼鱼水质的应用。

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Muhammad Hanif Azhar, Devrim Memiş
{"title":"小浮子(Lemna minor)和淡水贻贝(Anodonta cygnea)作为生物过滤器与过滤系统相结合,在小型RAS系统中维持鳟鱼幼鱼水质的应用。","authors":"Muhammad Hanif Azhar, Devrim Memiş","doi":"10.1002/wer.70046","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing nutrient concentrations in fish culture systems over time can reduce water quality. However, the nutrient increase can be remediated by pairing organisms at lower trophic levels with a mechanical filtration system to improve nutrient removal efficiency and water quality for fish culture. This research uses the RAS system to determine the performance of integrating living organisms as biofilters in rearing juvenile rainbow trout (Oncorhynchus mykiss) for 56 days. Duckweed (Lemna minor) was added to replicate tanks at three treatment levels: T1 (100 g wet weight and 20% area coverage), T2 (200 g wet weight and 40% area coverage), and T3 (300g wet weight and 60% area coverage). The duckweed in each treatment tank was supplemented with 20 freshwater mussels (Anodonta cygnea) with an average body weight of 56 ± 1.0 g. Physical and chemical water quality parameters were measured in fish tanks and all ponds in the RAS system. Fish from the rearing tanks were weighed every two weeks. Duckweed biomass was measured weekly; the mussels were weighed at the beginning and end of the study, and the mussels were measured at the beginning and end of the rearing period. The fish was partially harvested every two weeks to maintain constant fish biomass. Using duckweed (L. minor) with different biomass weights and areal coverage, coupled with the freshwater mussels (A. cygnea) as living biofilters, had a significant effect (P < 0.05) on water quality parameters. Ammonium (NH<sub>4</sub>), nitrite (NO<sub>2</sub>), and nitrate (NO<sub>3</sub>) concentrations decreased throughout the study. During the study period, juvenile trout experienced growth with an SGR of 2.62-2.72%/gram with a survival rate of 100%. Partial harvesting during the rearing period positively impacted the average body weight of fish growth and duckweed biomass. The best duckweed growth performance was found in treatment T1 (cover area 20% with wet weight 100 g) with a productivity of 9.4 (g/m<sup>2</sup>/day). PRACTITIONER POINTS: Twenty percent duckweed coverage with freshwater mussels achieves optimal nutrient removal in RAS systems, improving water quality efficiently and growth better than other treatments. Combined biofilters (duckweed-mussel) and filtration units reduce operational costs while maintaining high fish survival rates in RAS systems. Integration of living biofilters provides sustainable water treatment without chemical additives, suitable for small-scale aquaculture operations.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 2","pages":"e70046"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of duckweed (Lemna minor) and freshwater mussels (Anodonta cygnea) as living biofilters integrating with a filtration system to maintain water quality in juvenile trout (Oncorhynchus mykiss) rearing using the small scale RAS system.\",\"authors\":\"Muhammad Hanif Azhar, Devrim Memiş\",\"doi\":\"10.1002/wer.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing nutrient concentrations in fish culture systems over time can reduce water quality. However, the nutrient increase can be remediated by pairing organisms at lower trophic levels with a mechanical filtration system to improve nutrient removal efficiency and water quality for fish culture. This research uses the RAS system to determine the performance of integrating living organisms as biofilters in rearing juvenile rainbow trout (Oncorhynchus mykiss) for 56 days. Duckweed (Lemna minor) was added to replicate tanks at three treatment levels: T1 (100 g wet weight and 20% area coverage), T2 (200 g wet weight and 40% area coverage), and T3 (300g wet weight and 60% area coverage). The duckweed in each treatment tank was supplemented with 20 freshwater mussels (Anodonta cygnea) with an average body weight of 56 ± 1.0 g. Physical and chemical water quality parameters were measured in fish tanks and all ponds in the RAS system. Fish from the rearing tanks were weighed every two weeks. Duckweed biomass was measured weekly; the mussels were weighed at the beginning and end of the study, and the mussels were measured at the beginning and end of the rearing period. The fish was partially harvested every two weeks to maintain constant fish biomass. Using duckweed (L. minor) with different biomass weights and areal coverage, coupled with the freshwater mussels (A. cygnea) as living biofilters, had a significant effect (P < 0.05) on water quality parameters. Ammonium (NH<sub>4</sub>), nitrite (NO<sub>2</sub>), and nitrate (NO<sub>3</sub>) concentrations decreased throughout the study. During the study period, juvenile trout experienced growth with an SGR of 2.62-2.72%/gram with a survival rate of 100%. Partial harvesting during the rearing period positively impacted the average body weight of fish growth and duckweed biomass. The best duckweed growth performance was found in treatment T1 (cover area 20% with wet weight 100 g) with a productivity of 9.4 (g/m<sup>2</sup>/day). PRACTITIONER POINTS: Twenty percent duckweed coverage with freshwater mussels achieves optimal nutrient removal in RAS systems, improving water quality efficiently and growth better than other treatments. Combined biofilters (duckweed-mussel) and filtration units reduce operational costs while maintaining high fish survival rates in RAS systems. Integration of living biofilters provides sustainable water treatment without chemical additives, suitable for small-scale aquaculture operations.</p>\",\"PeriodicalId\":23621,\"journal\":{\"name\":\"Water Environment Research\",\"volume\":\"97 2\",\"pages\":\"e70046\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/wer.70046\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70046","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

随着时间的推移,鱼类养殖系统中营养物质浓度的增加会降低水质。然而,通过将低营养水平的生物与机械过滤系统配对,可以弥补营养物质的增加,以提高养鱼的营养物质去除效率和水质。本研究采用RAS系统对虹鳟鱼幼鱼(Oncorhynchus mykiss) 56天的养殖过程中整合生物作为生物过滤器的性能进行了测定。在重复池中按3个处理水平分别添加浮萍:T1(湿重100 g,面积覆盖率20%)、T2(湿重200 g,面积覆盖率40%)和T3(湿重300g,面积覆盖率60%)。每个处理池的浮萍中添加平均体重为56±1.0 g的淡水贻贝(Anodonta cygnea) 20只。测定了RAS系统中各鱼缸及所有池塘的理化水质参数。饲养池里的鱼每两周称重一次。浮萍生物量每周测定一次;在研究开始和结束时对贻贝称重,在饲养期开始和结束时对贻贝进行测量。每两周收获部分鱼,以保持恒定的鱼生物量。采用不同生物量重量和覆盖面积的浮萍(L. minor)与淡水贻贝(a . cygnea)作为活生物过滤器,在整个研究过程中对p4有显著影响,亚硝酸盐(NO2)和硝酸盐(NO3)浓度降低。在研究期间,鳟鱼幼鱼的生长速率为2.62 ~ 2.72%/g,成活率为100%。饲养期的部分收获对鱼的平均体重和浮萍生物量有积极影响。处理T1(覆盖面积20%,湿重100 g)的浮萍生长性能最好,产量为9.4 (g/m2/d)。从业者要点:20%的浮藻覆盖淡水贻贝在RAS系统中达到最佳的营养去除,有效地改善水质和生长比其他处理更好。组合式生物过滤器(浮藻-贻贝)和过滤装置可降低操作成本,同时在RAS系统中保持较高的鱼类存活率。一体化的活生物过滤器提供可持续的水处理,不需要化学添加剂,适用于小规模水产养殖作业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The application of duckweed (Lemna minor) and freshwater mussels (Anodonta cygnea) as living biofilters integrating with a filtration system to maintain water quality in juvenile trout (Oncorhynchus mykiss) rearing using the small scale RAS system.

Increasing nutrient concentrations in fish culture systems over time can reduce water quality. However, the nutrient increase can be remediated by pairing organisms at lower trophic levels with a mechanical filtration system to improve nutrient removal efficiency and water quality for fish culture. This research uses the RAS system to determine the performance of integrating living organisms as biofilters in rearing juvenile rainbow trout (Oncorhynchus mykiss) for 56 days. Duckweed (Lemna minor) was added to replicate tanks at three treatment levels: T1 (100 g wet weight and 20% area coverage), T2 (200 g wet weight and 40% area coverage), and T3 (300g wet weight and 60% area coverage). The duckweed in each treatment tank was supplemented with 20 freshwater mussels (Anodonta cygnea) with an average body weight of 56 ± 1.0 g. Physical and chemical water quality parameters were measured in fish tanks and all ponds in the RAS system. Fish from the rearing tanks were weighed every two weeks. Duckweed biomass was measured weekly; the mussels were weighed at the beginning and end of the study, and the mussels were measured at the beginning and end of the rearing period. The fish was partially harvested every two weeks to maintain constant fish biomass. Using duckweed (L. minor) with different biomass weights and areal coverage, coupled with the freshwater mussels (A. cygnea) as living biofilters, had a significant effect (P < 0.05) on water quality parameters. Ammonium (NH4), nitrite (NO2), and nitrate (NO3) concentrations decreased throughout the study. During the study period, juvenile trout experienced growth with an SGR of 2.62-2.72%/gram with a survival rate of 100%. Partial harvesting during the rearing period positively impacted the average body weight of fish growth and duckweed biomass. The best duckweed growth performance was found in treatment T1 (cover area 20% with wet weight 100 g) with a productivity of 9.4 (g/m2/day). PRACTITIONER POINTS: Twenty percent duckweed coverage with freshwater mussels achieves optimal nutrient removal in RAS systems, improving water quality efficiently and growth better than other treatments. Combined biofilters (duckweed-mussel) and filtration units reduce operational costs while maintaining high fish survival rates in RAS systems. Integration of living biofilters provides sustainable water treatment without chemical additives, suitable for small-scale aquaculture operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信