脂肪酶介导的人乳脂代用品的生产:机制的见解和合理的合成策略。

Zeqing Liu, Ziteng Su, Lingmei Dai, Dehua Liu, Wei Du
{"title":"脂肪酶介导的人乳脂代用品的生产:机制的见解和合理的合成策略。","authors":"Zeqing Liu, Ziteng Su, Lingmei Dai, Dehua Liu, Wei Du","doi":"10.1016/j.foodres.2025.115795","DOIUrl":null,"url":null,"abstract":"<p><p>1,3-dioleoyl-2-palmitoylglycerol (OPO) and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) are two essential types of human milk fat substitutes (HMFS). Their unique fatty acid composition and distribution play a significant role in promoting infant health, making the reaction conversion and acyl migration critical factors for developing efficient preparation methods. Promoting the conversion of the substrate while simultaneously inhibiting acyl migration is crucial for obtaining the desired HMFS products. In this study, we comparatively investigated enzymatic acidolysis and transesterification for HMFS production and revealed enzymatic kinetics as well as acyl migration mechanism during the process. Acyl migration was observed through the lipase-catalyzed mechanism, and the associated free energy changes were analyzed using density functional theory (DFT). The presence of long-chain fatty acids in the synthesis system resulted in intermediates with higher relative free energy during acyl migration. Based on these findings, we propose a novel synthesis strategy consisting of multi-step transesterification and dry fractionation, leveraging the differences in freezing points to minimize acyl migration. The resulting OPO product contains 90.42% oleic acid specifically at the sn-1,3 positions, highlighting its potential application in infant formulas. This study presents a systematic investigation of the kinetics and mechanisms involved in lipase-mediated HMFS production, providing valuable insights for rational synthesis approaches.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"202 ","pages":"115795"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipase-mediated human milk fat substitute production: Mechanistic insights and a rational synthesis strategy.\",\"authors\":\"Zeqing Liu, Ziteng Su, Lingmei Dai, Dehua Liu, Wei Du\",\"doi\":\"10.1016/j.foodres.2025.115795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1,3-dioleoyl-2-palmitoylglycerol (OPO) and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) are two essential types of human milk fat substitutes (HMFS). Their unique fatty acid composition and distribution play a significant role in promoting infant health, making the reaction conversion and acyl migration critical factors for developing efficient preparation methods. Promoting the conversion of the substrate while simultaneously inhibiting acyl migration is crucial for obtaining the desired HMFS products. In this study, we comparatively investigated enzymatic acidolysis and transesterification for HMFS production and revealed enzymatic kinetics as well as acyl migration mechanism during the process. Acyl migration was observed through the lipase-catalyzed mechanism, and the associated free energy changes were analyzed using density functional theory (DFT). The presence of long-chain fatty acids in the synthesis system resulted in intermediates with higher relative free energy during acyl migration. Based on these findings, we propose a novel synthesis strategy consisting of multi-step transesterification and dry fractionation, leveraging the differences in freezing points to minimize acyl migration. The resulting OPO product contains 90.42% oleic acid specifically at the sn-1,3 positions, highlighting its potential application in infant formulas. This study presents a systematic investigation of the kinetics and mechanisms involved in lipase-mediated HMFS production, providing valuable insights for rational synthesis approaches.</p>\",\"PeriodicalId\":94010,\"journal\":{\"name\":\"Food research international (Ottawa, Ont.)\",\"volume\":\"202 \",\"pages\":\"115795\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food research international (Ottawa, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodres.2025.115795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2025.115795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1,3-二油基-2-棕榈酰甘油(OPO)和1-油基-2-棕榈酰-3-亚油基甘油(OPL)是人类乳脂替代品(HMFS)的两种基本类型。它们独特的脂肪酸组成和分布对促进婴儿健康起着重要作用,因此反应转化和酰基迁移是开发高效制备方法的关键因素。促进底物的转化,同时抑制酰基迁移是获得所需HMFS产品的关键。在本研究中,我们比较研究了酶法酸解和酯交换法制备HMFS,揭示了该过程中的酶动力学和酰基迁移机制。通过脂肪酶催化机制观察酰基迁移,并利用密度泛函理论(DFT)分析相关自由能变化。长链脂肪酸在合成体系中的存在导致酰基迁移过程中中间体具有较高的相对自由能。基于这些发现,我们提出了一种新的合成策略,包括多步酯交换和干燥分馏,利用凝固点的差异来减少酰基迁移。所得OPO产品在sn-1,3位的油酸含量为90.42%,在婴儿配方奶粉中的应用潜力显著。本研究对脂肪酶介导的HMFS生产的动力学和机制进行了系统的研究,为合理的合成方法提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipase-mediated human milk fat substitute production: Mechanistic insights and a rational synthesis strategy.

1,3-dioleoyl-2-palmitoylglycerol (OPO) and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) are two essential types of human milk fat substitutes (HMFS). Their unique fatty acid composition and distribution play a significant role in promoting infant health, making the reaction conversion and acyl migration critical factors for developing efficient preparation methods. Promoting the conversion of the substrate while simultaneously inhibiting acyl migration is crucial for obtaining the desired HMFS products. In this study, we comparatively investigated enzymatic acidolysis and transesterification for HMFS production and revealed enzymatic kinetics as well as acyl migration mechanism during the process. Acyl migration was observed through the lipase-catalyzed mechanism, and the associated free energy changes were analyzed using density functional theory (DFT). The presence of long-chain fatty acids in the synthesis system resulted in intermediates with higher relative free energy during acyl migration. Based on these findings, we propose a novel synthesis strategy consisting of multi-step transesterification and dry fractionation, leveraging the differences in freezing points to minimize acyl migration. The resulting OPO product contains 90.42% oleic acid specifically at the sn-1,3 positions, highlighting its potential application in infant formulas. This study presents a systematic investigation of the kinetics and mechanisms involved in lipase-mediated HMFS production, providing valuable insights for rational synthesis approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信