{"title":"线粒体中非规范orfs衍生的蛋白质产物:其在健康和疾病中的功能的多方面探索。","authors":"Ikram Ajala, Benoît Vanderperre","doi":"10.1002/pro.70053","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally, eukaryotic mRNAs were perceived as inherently monocistronic. However, recent insights from ribosome profiling (Ribo-seq) and proteomics studies challenge this paradigm. These investigations reveal that, beyond the currently annotated reference proteins (RefProts), there exist additional proteins known as alternative proteins (AltProts) and small open reading frames derived microproteins encoded in regions of mRNAs previously considered untranslated or in non-coding transcripts. This experimental evidence broadens the spectrum of functional proteins within cells, tissues, and organs, potentially offering crucial insights into biological processes. Notably, a significant proportion of these newly identified AltProts and microproteins demonstrates localization in mitochondria, contributing to the functions of mitochondrial complexes. This review delves into the overlooked realm of the alternative proteome within mitochondria, exploring the role of nuclear or mitochondrial-genome-encoded AltProts and microproteins in physiological and pathological cellular processes.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 3","pages":"e70053"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837024/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-canonical ORFs-derived protein products in mitochondria: A multifaceted exploration of their functions in health and disease.\",\"authors\":\"Ikram Ajala, Benoît Vanderperre\",\"doi\":\"10.1002/pro.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditionally, eukaryotic mRNAs were perceived as inherently monocistronic. However, recent insights from ribosome profiling (Ribo-seq) and proteomics studies challenge this paradigm. These investigations reveal that, beyond the currently annotated reference proteins (RefProts), there exist additional proteins known as alternative proteins (AltProts) and small open reading frames derived microproteins encoded in regions of mRNAs previously considered untranslated or in non-coding transcripts. This experimental evidence broadens the spectrum of functional proteins within cells, tissues, and organs, potentially offering crucial insights into biological processes. Notably, a significant proportion of these newly identified AltProts and microproteins demonstrates localization in mitochondria, contributing to the functions of mitochondrial complexes. This review delves into the overlooked realm of the alternative proteome within mitochondria, exploring the role of nuclear or mitochondrial-genome-encoded AltProts and microproteins in physiological and pathological cellular processes.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 3\",\"pages\":\"e70053\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70053\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70053","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Non-canonical ORFs-derived protein products in mitochondria: A multifaceted exploration of their functions in health and disease.
Traditionally, eukaryotic mRNAs were perceived as inherently monocistronic. However, recent insights from ribosome profiling (Ribo-seq) and proteomics studies challenge this paradigm. These investigations reveal that, beyond the currently annotated reference proteins (RefProts), there exist additional proteins known as alternative proteins (AltProts) and small open reading frames derived microproteins encoded in regions of mRNAs previously considered untranslated or in non-coding transcripts. This experimental evidence broadens the spectrum of functional proteins within cells, tissues, and organs, potentially offering crucial insights into biological processes. Notably, a significant proportion of these newly identified AltProts and microproteins demonstrates localization in mitochondria, contributing to the functions of mitochondrial complexes. This review delves into the overlooked realm of the alternative proteome within mitochondria, exploring the role of nuclear or mitochondrial-genome-encoded AltProts and microproteins in physiological and pathological cellular processes.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).