线粒体中非规范orfs衍生的蛋白质产物:其在健康和疾病中的功能的多方面探索。

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-03-01 DOI:10.1002/pro.70053
Ikram Ajala, Benoît Vanderperre
{"title":"线粒体中非规范orfs衍生的蛋白质产物:其在健康和疾病中的功能的多方面探索。","authors":"Ikram Ajala, Benoît Vanderperre","doi":"10.1002/pro.70053","DOIUrl":null,"url":null,"abstract":"<p><p>Traditionally, eukaryotic mRNAs were perceived as inherently monocistronic. However, recent insights from ribosome profiling (Ribo-seq) and proteomics studies challenge this paradigm. These investigations reveal that, beyond the currently annotated reference proteins (RefProts), there exist additional proteins known as alternative proteins (AltProts) and small open reading frames derived microproteins encoded in regions of mRNAs previously considered untranslated or in non-coding transcripts. This experimental evidence broadens the spectrum of functional proteins within cells, tissues, and organs, potentially offering crucial insights into biological processes. Notably, a significant proportion of these newly identified AltProts and microproteins demonstrates localization in mitochondria, contributing to the functions of mitochondrial complexes. This review delves into the overlooked realm of the alternative proteome within mitochondria, exploring the role of nuclear or mitochondrial-genome-encoded AltProts and microproteins in physiological and pathological cellular processes.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 3","pages":"e70053"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837024/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-canonical ORFs-derived protein products in mitochondria: A multifaceted exploration of their functions in health and disease.\",\"authors\":\"Ikram Ajala, Benoît Vanderperre\",\"doi\":\"10.1002/pro.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditionally, eukaryotic mRNAs were perceived as inherently monocistronic. However, recent insights from ribosome profiling (Ribo-seq) and proteomics studies challenge this paradigm. These investigations reveal that, beyond the currently annotated reference proteins (RefProts), there exist additional proteins known as alternative proteins (AltProts) and small open reading frames derived microproteins encoded in regions of mRNAs previously considered untranslated or in non-coding transcripts. This experimental evidence broadens the spectrum of functional proteins within cells, tissues, and organs, potentially offering crucial insights into biological processes. Notably, a significant proportion of these newly identified AltProts and microproteins demonstrates localization in mitochondria, contributing to the functions of mitochondrial complexes. This review delves into the overlooked realm of the alternative proteome within mitochondria, exploring the role of nuclear or mitochondrial-genome-encoded AltProts and microproteins in physiological and pathological cellular processes.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 3\",\"pages\":\"e70053\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70053\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70053","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

传统上,真核mrna被认为是固有的单顺反子。然而,最近来自核糖体分析(Ribo-seq)和蛋白质组学研究的见解挑战了这种范式。这些研究表明,除了目前注释的参考蛋白(RefProts)之外,还存在其他被称为替代蛋白(AltProts)的蛋白质和小的开放阅读框衍生的微蛋白,这些微蛋白编码在以前被认为未翻译或非编码转录本的mrna区域中。这一实验证据拓宽了细胞、组织和器官内功能蛋白的光谱,可能为生物过程提供重要的见解。值得注意的是,这些新发现的AltProts和微蛋白中有很大一部分在线粒体中定位,有助于线粒体复合物的功能。这篇综述深入到线粒体内替代蛋白质组被忽视的领域,探索核或线粒体基因组编码的AltProts和微蛋白在生理和病理细胞过程中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-canonical ORFs-derived protein products in mitochondria: A multifaceted exploration of their functions in health and disease.

Traditionally, eukaryotic mRNAs were perceived as inherently monocistronic. However, recent insights from ribosome profiling (Ribo-seq) and proteomics studies challenge this paradigm. These investigations reveal that, beyond the currently annotated reference proteins (RefProts), there exist additional proteins known as alternative proteins (AltProts) and small open reading frames derived microproteins encoded in regions of mRNAs previously considered untranslated or in non-coding transcripts. This experimental evidence broadens the spectrum of functional proteins within cells, tissues, and organs, potentially offering crucial insights into biological processes. Notably, a significant proportion of these newly identified AltProts and microproteins demonstrates localization in mitochondria, contributing to the functions of mitochondrial complexes. This review delves into the overlooked realm of the alternative proteome within mitochondria, exploring the role of nuclear or mitochondrial-genome-encoded AltProts and microproteins in physiological and pathological cellular processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信