{"title":"六种人类整体跨膜酶的结构生物信息学及其AlphaFold3预测水溶性QTY类似物:对FACE1和STEA4结合机制的见解","authors":"Edward Chen, Emily Pan, Shuguang Zhang","doi":"10.1007/s11095-025-03822-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Human integral membrane enzymes are essential for catalyzing a wide range of biochemical reactions and regulating key cellular processes. However, studying these enzymes remains challenging due to their hydrophobic nature, which necessitates the use of detergents. This study explores whether applying the QTY code can reduce the hydrophobicity of these enzymes while preserving their structures and functions, thus facilitating bioinformatics analysis of six key integral membrane enzymes: MGST2, LTC4S, PTGES, FACE1, STEA4, and SCD.</p><p><strong>Methods: </strong>The water-soluble QTY analogs of the six membrane enzymes were predicted using AlphaFold3. The predicted structures were superposed with CyroEM determined native structures in PyMOL to observe changes in structure and protein-ligand binding ability.</p><p><strong>Results: </strong>The native membrane enzymes superposed well with their respective QTY analogs, with the root mean square deviation (RMSD) ranging from 0.273 Å to 0.875 Å. Surface hydrophobic patches on the QTY analogs were significantly reduced. Importantly, the protein-ligand interactions in FACE1 and STEA4 were largely preserved, indicating maintained functionality.</p><p><strong>Conclusion: </strong>Our structural bioinformatics studies using the QTY code and AlphaFold3 not only provide the opportunities of designing more water-soluble integral membrane enzymes, but also use these water-soluble QTY analogs as antigens for therapeutic monoclonal antibody discovery to specifically target the key integral membrane enzymes.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"291-305"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure Bioinformatics of Six Human Integral Transmembrane Enzymes and their AlphaFold3 Predicted Water-Soluble QTY Analogs: Insights into FACE1 and STEA4 Binding Mechanisms.\",\"authors\":\"Edward Chen, Emily Pan, Shuguang Zhang\",\"doi\":\"10.1007/s11095-025-03822-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Human integral membrane enzymes are essential for catalyzing a wide range of biochemical reactions and regulating key cellular processes. However, studying these enzymes remains challenging due to their hydrophobic nature, which necessitates the use of detergents. This study explores whether applying the QTY code can reduce the hydrophobicity of these enzymes while preserving their structures and functions, thus facilitating bioinformatics analysis of six key integral membrane enzymes: MGST2, LTC4S, PTGES, FACE1, STEA4, and SCD.</p><p><strong>Methods: </strong>The water-soluble QTY analogs of the six membrane enzymes were predicted using AlphaFold3. The predicted structures were superposed with CyroEM determined native structures in PyMOL to observe changes in structure and protein-ligand binding ability.</p><p><strong>Results: </strong>The native membrane enzymes superposed well with their respective QTY analogs, with the root mean square deviation (RMSD) ranging from 0.273 Å to 0.875 Å. Surface hydrophobic patches on the QTY analogs were significantly reduced. Importantly, the protein-ligand interactions in FACE1 and STEA4 were largely preserved, indicating maintained functionality.</p><p><strong>Conclusion: </strong>Our structural bioinformatics studies using the QTY code and AlphaFold3 not only provide the opportunities of designing more water-soluble integral membrane enzymes, but also use these water-soluble QTY analogs as antigens for therapeutic monoclonal antibody discovery to specifically target the key integral membrane enzymes.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"291-305\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-025-03822-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03822-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
目的:人体整体膜酶是催化多种生物化学反应和调节关键细胞过程所必需的酶。然而,由于这些酶的疏水性,研究这些酶仍然具有挑战性,这就需要使用洗涤剂。本研究探讨了应用QTY编码是否可以在保留这些酶的结构和功能的同时降低这些酶的疏水性,从而促进对MGST2、LTC4S、PTGES、FACE1、STEA4和SCD这6个关键的完整膜酶的生物信息学分析。方法:采用AlphaFold3软件预测6种膜酶的水溶性QTY类似物。将预测的结构与CyroEM测定的PyMOL天然结构叠加,观察PyMOL的结构变化和蛋白质与配体结合能力。结果:天然膜酶与相应的QTY类似物叠加良好,均方根偏差(RMSD)在0.273 Å ~ 0.875 Å之间。QTY类似物表面疏水斑块明显减少。重要的是,FACE1和STEA4中的蛋白质-配体相互作用在很大程度上得到了保留,表明功能得以维持。结论:我们利用QTY编码和AlphaFold3进行结构生物信息学研究,不仅为设计更多的水溶性完整膜酶提供了机会,而且可以利用这些水溶性QTY类似物作为抗原,发现特异性靶向关键完整膜酶的治疗性单克隆抗体。
Structure Bioinformatics of Six Human Integral Transmembrane Enzymes and their AlphaFold3 Predicted Water-Soluble QTY Analogs: Insights into FACE1 and STEA4 Binding Mechanisms.
Objective: Human integral membrane enzymes are essential for catalyzing a wide range of biochemical reactions and regulating key cellular processes. However, studying these enzymes remains challenging due to their hydrophobic nature, which necessitates the use of detergents. This study explores whether applying the QTY code can reduce the hydrophobicity of these enzymes while preserving their structures and functions, thus facilitating bioinformatics analysis of six key integral membrane enzymes: MGST2, LTC4S, PTGES, FACE1, STEA4, and SCD.
Methods: The water-soluble QTY analogs of the six membrane enzymes were predicted using AlphaFold3. The predicted structures were superposed with CyroEM determined native structures in PyMOL to observe changes in structure and protein-ligand binding ability.
Results: The native membrane enzymes superposed well with their respective QTY analogs, with the root mean square deviation (RMSD) ranging from 0.273 Å to 0.875 Å. Surface hydrophobic patches on the QTY analogs were significantly reduced. Importantly, the protein-ligand interactions in FACE1 and STEA4 were largely preserved, indicating maintained functionality.
Conclusion: Our structural bioinformatics studies using the QTY code and AlphaFold3 not only provide the opportunities of designing more water-soluble integral membrane enzymes, but also use these water-soluble QTY analogs as antigens for therapeutic monoclonal antibody discovery to specifically target the key integral membrane enzymes.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.