Miho Sakato-Antoku, Nikisha Patel, Mayu Inaba, Qinhui Rao, Jun Yang, Ramila S Patel-King, Kazuo Inaba, Jeremy L Balsbaugh, Stephen M King
{"title":"系统蛋白质组学揭示了轴突动力蛋白甲基化在运动纤毛真核生物中的保守模式。","authors":"Miho Sakato-Antoku, Nikisha Patel, Mayu Inaba, Qinhui Rao, Jun Yang, Ramila S Patel-King, Kazuo Inaba, Jeremy L Balsbaugh, Stephen M King","doi":"10.1091/mbc.E25-02-0055","DOIUrl":null,"url":null,"abstract":"<p><p>Axonemal dynein assembly occurs in the cytoplasm and numerous cytosolic factors are specifically required for this process. Recently, one factor (DNAAF3/PF22) was identified as a methyltransferase. Examination of <i>Chlamydomonas</i> dyneins found they are methylated at substoichiometric levels on multiple sites, including Lys and Arg residues in several of the nucleotide-binding domains and on the microtubule-binding region. Given the highly conserved nature of axonemal dyneins, one key question is whether methylation happens only in dyneins from the chlorophyte algae, or whether these modifications occur more broadly throughout the motile ciliated eukaryotes. Here we take a phyloproteomic approach and examine dynein methylation in a wide range of eukaryotic organisms bearing motile cilia. We find unambiguous evidence for methylation of axonemal dyneins in alveolates, chlorophytes, trypanosomes, and a broad range of metazoans. Intriguingly, we were unable to identify a single instance of methylation on <i>Drosophila melanogaster</i> sperm dyneins even though dipterans express a Dnaaf3 orthologue, or in spermatozoids of the fern <i>Ceratopteris</i>, which assembles inner arms but lacks both outer arm dyneins and DNAAF3. Thus, methylation of axonemal dyneins has been broadly conserved in most eukaryotic groups and has the potential to variably modify the function of these motors.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar49"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phyloproteomics reveals conserved patterns of axonemal dynein methylation across the motile ciliated eukaryotes.\",\"authors\":\"Miho Sakato-Antoku, Nikisha Patel, Mayu Inaba, Qinhui Rao, Jun Yang, Ramila S Patel-King, Kazuo Inaba, Jeremy L Balsbaugh, Stephen M King\",\"doi\":\"10.1091/mbc.E25-02-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Axonemal dynein assembly occurs in the cytoplasm and numerous cytosolic factors are specifically required for this process. Recently, one factor (DNAAF3/PF22) was identified as a methyltransferase. Examination of <i>Chlamydomonas</i> dyneins found they are methylated at substoichiometric levels on multiple sites, including Lys and Arg residues in several of the nucleotide-binding domains and on the microtubule-binding region. Given the highly conserved nature of axonemal dyneins, one key question is whether methylation happens only in dyneins from the chlorophyte algae, or whether these modifications occur more broadly throughout the motile ciliated eukaryotes. Here we take a phyloproteomic approach and examine dynein methylation in a wide range of eukaryotic organisms bearing motile cilia. We find unambiguous evidence for methylation of axonemal dyneins in alveolates, chlorophytes, trypanosomes, and a broad range of metazoans. Intriguingly, we were unable to identify a single instance of methylation on <i>Drosophila melanogaster</i> sperm dyneins even though dipterans express a Dnaaf3 orthologue, or in spermatozoids of the fern <i>Ceratopteris</i>, which assembles inner arms but lacks both outer arm dyneins and DNAAF3. Thus, methylation of axonemal dyneins has been broadly conserved in most eukaryotic groups and has the potential to variably modify the function of these motors.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"ar49\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E25-02-0055\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E25-02-0055","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Phyloproteomics reveals conserved patterns of axonemal dynein methylation across the motile ciliated eukaryotes.
Axonemal dynein assembly occurs in the cytoplasm and numerous cytosolic factors are specifically required for this process. Recently, one factor (DNAAF3/PF22) was identified as a methyltransferase. Examination of Chlamydomonas dyneins found they are methylated at substoichiometric levels on multiple sites, including Lys and Arg residues in several of the nucleotide-binding domains and on the microtubule-binding region. Given the highly conserved nature of axonemal dyneins, one key question is whether methylation happens only in dyneins from the chlorophyte algae, or whether these modifications occur more broadly throughout the motile ciliated eukaryotes. Here we take a phyloproteomic approach and examine dynein methylation in a wide range of eukaryotic organisms bearing motile cilia. We find unambiguous evidence for methylation of axonemal dyneins in alveolates, chlorophytes, trypanosomes, and a broad range of metazoans. Intriguingly, we were unable to identify a single instance of methylation on Drosophila melanogaster sperm dyneins even though dipterans express a Dnaaf3 orthologue, or in spermatozoids of the fern Ceratopteris, which assembles inner arms but lacks both outer arm dyneins and DNAAF3. Thus, methylation of axonemal dyneins has been broadly conserved in most eukaryotic groups and has the potential to variably modify the function of these motors.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.