大鼠肾组织氧合的第二近红外光声成像。

IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-02-01 Epub Date: 2025-02-18 DOI:10.1117/1.JBO.30.2.026002
Vinoin Devpaul Vincely, Carolyn L Bayer
{"title":"大鼠肾组织氧合的第二近红外光声成像。","authors":"Vinoin Devpaul Vincely, Carolyn L Bayer","doi":"10.1117/1.JBO.30.2.026002","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Conventionally, spectral photoacoustic imaging (sPAI) to assess tissue oxygenation ( <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> ) uses optical wavelengths in the first near-infrared (NIR-I) window. This limits the maximum photoacoustic imaging depth due to the high spectral coloring of biological tissues and has been a major barrier to the clinical translation of the technique.</p><p><strong>Aim: </strong>We demonstrate the second near-infrared (NIR-II) tissue optical window (950 to 1400 nm) for the assessment of blood and tissue <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> .</p><p><strong>Approach: </strong>The NIR-II PA spectra of oxygenated and deoxygenated hemoglobin were first characterized using a phantom. Optimal wavelengths to minimize spectral coloring were identified. The resulting NIR-II PA imaging methods were then validated <i>in vivo</i> by measuring kidney <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> in adult female rats.</p><p><strong>Results: </strong>sPAI of whole blood, in a phantom, and of blood in kidneys <i>in vivo</i> produced PA spectra proportional to wavelength-dependent optical absorption. Using the NIR-II wavelengths for spectral unmixing resulted in a <math><mrow><mo>∼</mo> <mn>50</mn> <mo>%</mo></mrow> </math> decrease in the error of the estimated blood <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> , compared with conventional NIR-I wavelengths. <i>In vivo</i> measurements of kidney <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> validated these findings, with a similar 50% reduction in error when using NIR-II wavelengths versus NIR-I wavelengths at larger illumination depths.</p><p><strong>Conclusions: </strong>sPAI using NIR-II wavelengths improved the accuracy of tissue <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> measurements. This is likely due to reduced scattering, which reduces the attenuation and, therefore, the impact of spectral coloring in this wavelength range. Combined with the increased safe skin exposure fluence limits in this wavelength range, these results demonstrate the potential to use NIR-II wavelengths for quantitative sPAI of <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> from deep heterogeneous tissues.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 2","pages":"026002"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833698/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photoacoustic imaging of rat kidney tissue oxygenation using second near-infrared wavelengths.\",\"authors\":\"Vinoin Devpaul Vincely, Carolyn L Bayer\",\"doi\":\"10.1117/1.JBO.30.2.026002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Conventionally, spectral photoacoustic imaging (sPAI) to assess tissue oxygenation ( <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> ) uses optical wavelengths in the first near-infrared (NIR-I) window. This limits the maximum photoacoustic imaging depth due to the high spectral coloring of biological tissues and has been a major barrier to the clinical translation of the technique.</p><p><strong>Aim: </strong>We demonstrate the second near-infrared (NIR-II) tissue optical window (950 to 1400 nm) for the assessment of blood and tissue <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> .</p><p><strong>Approach: </strong>The NIR-II PA spectra of oxygenated and deoxygenated hemoglobin were first characterized using a phantom. Optimal wavelengths to minimize spectral coloring were identified. The resulting NIR-II PA imaging methods were then validated <i>in vivo</i> by measuring kidney <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> in adult female rats.</p><p><strong>Results: </strong>sPAI of whole blood, in a phantom, and of blood in kidneys <i>in vivo</i> produced PA spectra proportional to wavelength-dependent optical absorption. Using the NIR-II wavelengths for spectral unmixing resulted in a <math><mrow><mo>∼</mo> <mn>50</mn> <mo>%</mo></mrow> </math> decrease in the error of the estimated blood <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> , compared with conventional NIR-I wavelengths. <i>In vivo</i> measurements of kidney <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> validated these findings, with a similar 50% reduction in error when using NIR-II wavelengths versus NIR-I wavelengths at larger illumination depths.</p><p><strong>Conclusions: </strong>sPAI using NIR-II wavelengths improved the accuracy of tissue <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> measurements. This is likely due to reduced scattering, which reduces the attenuation and, therefore, the impact of spectral coloring in this wavelength range. Combined with the increased safe skin exposure fluence limits in this wavelength range, these results demonstrate the potential to use NIR-II wavelengths for quantitative sPAI of <math> <mrow><msub><mi>sO</mi> <mn>2</mn></msub> </mrow> </math> from deep heterogeneous tissues.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 2\",\"pages\":\"026002\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833698/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.2.026002\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.2.026002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:通常,光谱光声成像(sPAI)评估组织氧合(so2)使用第一个近红外(NIR-I)窗口的光学波长。由于生物组织的高光谱着色,这限制了最大光声成像深度,并且已经成为该技术临床翻译的主要障碍。目的:我们展示了用于评估血液和组织so2的第二个近红外(NIR-II)组织光学窗口(950 ~ 1400 nm)。方法:首先使用模体表征了含氧和脱氧血红蛋白的NIR-II PA光谱。确定了最小光谱着色的最佳波长。然后通过测量成年雌性大鼠肾脏so2在体内验证NIR-II PA成像方法。结果:体内全血、幻体和肾脏血液的sPAI产生的PA光谱与波长相关的光吸收成正比。与传统的NIR-I波长相比,使用NIR-II波长进行光谱解混导致估计血液中so2的误差降低~ 50%。肾脏so2的体内测量证实了这些发现,在较大的照明深度下,使用NIR-II波长与使用NIR-I波长相比,误差减少了50%。结论:使用NIR-II波长的sPAI提高了组织so2测量的准确性。这可能是由于减少了散射,从而减少了衰减,从而减少了该波长范围内光谱着色的影响。结合在该波长范围内增加的安全皮肤暴露影响范围,这些结果证明了使用NIR-II波长对深层非均质组织中so2进行定量sPAI的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photoacoustic imaging of rat kidney tissue oxygenation using second near-infrared wavelengths.

Significance: Conventionally, spectral photoacoustic imaging (sPAI) to assess tissue oxygenation ( sO 2 ) uses optical wavelengths in the first near-infrared (NIR-I) window. This limits the maximum photoacoustic imaging depth due to the high spectral coloring of biological tissues and has been a major barrier to the clinical translation of the technique.

Aim: We demonstrate the second near-infrared (NIR-II) tissue optical window (950 to 1400 nm) for the assessment of blood and tissue sO 2 .

Approach: The NIR-II PA spectra of oxygenated and deoxygenated hemoglobin were first characterized using a phantom. Optimal wavelengths to minimize spectral coloring were identified. The resulting NIR-II PA imaging methods were then validated in vivo by measuring kidney sO 2 in adult female rats.

Results: sPAI of whole blood, in a phantom, and of blood in kidneys in vivo produced PA spectra proportional to wavelength-dependent optical absorption. Using the NIR-II wavelengths for spectral unmixing resulted in a 50 % decrease in the error of the estimated blood sO 2 , compared with conventional NIR-I wavelengths. In vivo measurements of kidney sO 2 validated these findings, with a similar 50% reduction in error when using NIR-II wavelengths versus NIR-I wavelengths at larger illumination depths.

Conclusions: sPAI using NIR-II wavelengths improved the accuracy of tissue sO 2 measurements. This is likely due to reduced scattering, which reduces the attenuation and, therefore, the impact of spectral coloring in this wavelength range. Combined with the increased safe skin exposure fluence limits in this wavelength range, these results demonstrate the potential to use NIR-II wavelengths for quantitative sPAI of sO 2 from deep heterogeneous tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信