载bFGF的ADM温敏水凝胶在糖尿病大鼠伤口愈合中的应用研究。

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Journal of Biomaterials Applications Pub Date : 2025-05-01 Epub Date: 2025-02-18 DOI:10.1177/08853282251321943
Haojiao Chen, Jianping Sun, Wenyang Liu
{"title":"载bFGF的ADM温敏水凝胶在糖尿病大鼠伤口愈合中的应用研究。","authors":"Haojiao Chen, Jianping Sun, Wenyang Liu","doi":"10.1177/08853282251321943","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Diabetic wound is one of the most common diabetic chronic complications. Effective treatments of diabetic wound remain limited. Here, we explored the effects of basic fibroblast growth factor (bFGF)-acellular dermal matrix (ADM) hydrogel on the diabetic wound. <b>Methods:</b> The bFGF-ADM hydrogel was manufactured by mixing 180 µL ADM hydrogel and 20 µL bFGF aqueous solution (10 mg/mL). The morphology of ADM hydrogel and bFGF-ADM hydrogel was observed under scanning electron microscope. The release property of bFGF-ADM hydrogel was determined by ELISA. CCK-8 assay was utilized to estimate the cell viability of mouse skin fibroblasts. The diabetes mellitus (DM) model was established in rats. The four wounds on the back of each DM rat were treated with the ADM hydrogel, bFGF-ADM hydrogel, bFGF aqueous solution and no solution (control), respectively. The wound healing rate of each rat was estimated. The traumatized skin tissue of each rat was observed by H&E staining and Sirius red staining. <b>Results:</b> The bFGF-ADM hydrogel displayed an interconnected pore structure and bFGF was gradually released from the bFGF-ADM hydrogel over time. The bFGF-ADM hydrogel could enhance the cell viability of skin fibroblasts and promote the wound healing rate, the re-epithelialization of wound and increase the collagen fiber content of dermis. And the bFGF-ADM hydrogel exhibited better therapeutic effects of diabetic wound than either bFGF or ADM alone. <b>Conclusions:</b> Our study revealed that the bFGF-ADM hydrogel could promote diabetic wound healing.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1156-1164"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Injectable ADM temperature-sensitive hydrogel loaded with bFGF in diabetic rat wound healing study.\",\"authors\":\"Haojiao Chen, Jianping Sun, Wenyang Liu\",\"doi\":\"10.1177/08853282251321943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Diabetic wound is one of the most common diabetic chronic complications. Effective treatments of diabetic wound remain limited. Here, we explored the effects of basic fibroblast growth factor (bFGF)-acellular dermal matrix (ADM) hydrogel on the diabetic wound. <b>Methods:</b> The bFGF-ADM hydrogel was manufactured by mixing 180 µL ADM hydrogel and 20 µL bFGF aqueous solution (10 mg/mL). The morphology of ADM hydrogel and bFGF-ADM hydrogel was observed under scanning electron microscope. The release property of bFGF-ADM hydrogel was determined by ELISA. CCK-8 assay was utilized to estimate the cell viability of mouse skin fibroblasts. The diabetes mellitus (DM) model was established in rats. The four wounds on the back of each DM rat were treated with the ADM hydrogel, bFGF-ADM hydrogel, bFGF aqueous solution and no solution (control), respectively. The wound healing rate of each rat was estimated. The traumatized skin tissue of each rat was observed by H&E staining and Sirius red staining. <b>Results:</b> The bFGF-ADM hydrogel displayed an interconnected pore structure and bFGF was gradually released from the bFGF-ADM hydrogel over time. The bFGF-ADM hydrogel could enhance the cell viability of skin fibroblasts and promote the wound healing rate, the re-epithelialization of wound and increase the collagen fiber content of dermis. And the bFGF-ADM hydrogel exhibited better therapeutic effects of diabetic wound than either bFGF or ADM alone. <b>Conclusions:</b> Our study revealed that the bFGF-ADM hydrogel could promote diabetic wound healing.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"1156-1164\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251321943\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251321943","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:糖尿病创面是糖尿病最常见的慢性并发症之一。糖尿病伤口的有效治疗仍然有限。本研究探讨了碱性成纤维细胞生长因子(bFGF)-脱细胞真皮基质(ADM)水凝胶对糖尿病创面的影响。方法:将180µL ADM水凝胶与20µL bFGF水溶液(10 mg/mL)混合制备bFGF-ADM水凝胶。扫描电镜下观察ADM水凝胶和bFGF-ADM水凝胶的形态。采用ELISA法测定bFGF-ADM水凝胶的释放特性。采用CCK-8法测定小鼠皮肤成纤维细胞的细胞活力。建立大鼠糖尿病(DM)模型。分别用ADM水凝胶、bFGF-ADM水凝胶、bFGF水溶液和无溶液(对照组)处理DM大鼠背部4处创面。估计各组大鼠创面愈合率。采用H&E染色和天狼星红染色观察各组大鼠皮肤损伤组织。结果:bFGF- adm水凝胶呈连通孔结构,bFGF随时间逐渐从bFGF- adm水凝胶中释放。bFGF-ADM水凝胶能提高皮肤成纤维细胞活力,促进创面愈合速度和创面再上皮化,增加真皮层胶原纤维含量。bFGF-ADM水凝胶对糖尿病创面的治疗效果优于单独使用bFGF或ADM。结论:本研究表明bFGF-ADM水凝胶具有促进糖尿病创面愈合的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Injectable ADM temperature-sensitive hydrogel loaded with bFGF in diabetic rat wound healing study.

Background: Diabetic wound is one of the most common diabetic chronic complications. Effective treatments of diabetic wound remain limited. Here, we explored the effects of basic fibroblast growth factor (bFGF)-acellular dermal matrix (ADM) hydrogel on the diabetic wound. Methods: The bFGF-ADM hydrogel was manufactured by mixing 180 µL ADM hydrogel and 20 µL bFGF aqueous solution (10 mg/mL). The morphology of ADM hydrogel and bFGF-ADM hydrogel was observed under scanning electron microscope. The release property of bFGF-ADM hydrogel was determined by ELISA. CCK-8 assay was utilized to estimate the cell viability of mouse skin fibroblasts. The diabetes mellitus (DM) model was established in rats. The four wounds on the back of each DM rat were treated with the ADM hydrogel, bFGF-ADM hydrogel, bFGF aqueous solution and no solution (control), respectively. The wound healing rate of each rat was estimated. The traumatized skin tissue of each rat was observed by H&E staining and Sirius red staining. Results: The bFGF-ADM hydrogel displayed an interconnected pore structure and bFGF was gradually released from the bFGF-ADM hydrogel over time. The bFGF-ADM hydrogel could enhance the cell viability of skin fibroblasts and promote the wound healing rate, the re-epithelialization of wound and increase the collagen fiber content of dermis. And the bFGF-ADM hydrogel exhibited better therapeutic effects of diabetic wound than either bFGF or ADM alone. Conclusions: Our study revealed that the bFGF-ADM hydrogel could promote diabetic wound healing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信