最小人源化Ezh2 Exon-18小鼠细胞系验证临床前CRISPR/Cas9方法治疗韦弗综合征

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Human gene therapy Pub Date : 2025-03-01 Epub Date: 2025-02-18 DOI:10.1089/hum.2024.170
William T Gibson, Tess C Lengyell, Andrea J Korecki, Sanne M Janssen, Bethany A Adair, Daniel Gamu, Matthew C Lorincz, Elizabeth M Simpson
{"title":"最小人源化Ezh2 Exon-18小鼠细胞系验证临床前CRISPR/Cas9方法治疗韦弗综合征","authors":"William T Gibson, Tess C Lengyell, Andrea J Korecki, Sanne M Janssen, Bethany A Adair, Daniel Gamu, Matthew C Lorincz, Elizabeth M Simpson","doi":"10.1089/hum.2024.170","DOIUrl":null,"url":null,"abstract":"<p><p>Weaver syndrome is a rare neurodevelopmental disorder that encompasses macrocephaly, tall stature, obesity, brain anomalies, intellectual disability, and increased susceptibility to cancer. This dominant monogenic disorder is caused by germline variants in enhancer of zeste 2 polycomb repressive complex 2 subunit (<i>EZH2</i>), a key epigenetic writer. Unfortunately, there are no effective treatments for Weaver syndrome. However, preclinical results support the potential for therapeutic gains, despite the prenatal onset. Thus, for the first time, we tested whether CRISPR/Cas9 gene-editing strategies may be able to \"correct\" a Weaver syndrome variant at the DNA level. We initiated these preclinical studies by humanizing the region surrounding the most-common recurring patient-variant location in mouse embryonic stem cells (ESCs). Humanization ensures that DNA-binding strategies will be directly translatable to human cells and patients. We then introduced into ESCs the humanized region, but now carrying the Weaver syndrome <i>EZH2</i> variant c.2035C>T p.Arg684Cys, and characterized the enzymatic properties of this missense variant. Our data showed a significant and dramatic reduction in EZH2-enzymatic activity, supporting previous cell-free studies of this variant as well as <i>in vitro</i> and <i>in vivo</i> mouse work by other teams. Intriguingly, this most-common variant does not create a complete loss-of-function, but rather is a hypomorphic allele. Together with prior reports describing hypomorphic effects of missense <i>EZH2</i> variants, these results demonstrate that the etiology of Weaver syndrome does not require complete loss of EZH2 enzymatic activity. Toward therapy, we tested four CRISPR gene-editing strategies. We demonstrated that <i>Streptococcus pyogenes</i> Cas9 (<i>Sp</i>Cas9) showed the highest variant correction (70.5%), but unfortunately also the highest alteration of the nonvariant allele (21.1-26.2%), an important consideration for gene-editing treatment of a dominant syndrome. However, <i>Staphylococcus aureus</i> Cas9 (<i>Sa</i>Cas9) gave a variant correction (52.5%) that was not significantly different than <i>Sp</i>Cas9, and encouragingly the lowest alteration of the nonvariant allele (2.0%). Thus, the therapeutic strategy using the small <i>Sa</i>Cas9 enzyme, a size that allows flexibility in therapeutic delivery, was the most optimal for targeting the Weaver syndrome <i>EZH2</i> variant c.2035C>T p.Arg684Cys.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"618-627"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimally Humanized <i>Ezh2</i> Exon-18 Mouse Cell Lines Validate Preclinical CRISPR/Cas9 Approach to Treat Weaver Syndrome.\",\"authors\":\"William T Gibson, Tess C Lengyell, Andrea J Korecki, Sanne M Janssen, Bethany A Adair, Daniel Gamu, Matthew C Lorincz, Elizabeth M Simpson\",\"doi\":\"10.1089/hum.2024.170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Weaver syndrome is a rare neurodevelopmental disorder that encompasses macrocephaly, tall stature, obesity, brain anomalies, intellectual disability, and increased susceptibility to cancer. This dominant monogenic disorder is caused by germline variants in enhancer of zeste 2 polycomb repressive complex 2 subunit (<i>EZH2</i>), a key epigenetic writer. Unfortunately, there are no effective treatments for Weaver syndrome. However, preclinical results support the potential for therapeutic gains, despite the prenatal onset. Thus, for the first time, we tested whether CRISPR/Cas9 gene-editing strategies may be able to \\\"correct\\\" a Weaver syndrome variant at the DNA level. We initiated these preclinical studies by humanizing the region surrounding the most-common recurring patient-variant location in mouse embryonic stem cells (ESCs). Humanization ensures that DNA-binding strategies will be directly translatable to human cells and patients. We then introduced into ESCs the humanized region, but now carrying the Weaver syndrome <i>EZH2</i> variant c.2035C>T p.Arg684Cys, and characterized the enzymatic properties of this missense variant. Our data showed a significant and dramatic reduction in EZH2-enzymatic activity, supporting previous cell-free studies of this variant as well as <i>in vitro</i> and <i>in vivo</i> mouse work by other teams. Intriguingly, this most-common variant does not create a complete loss-of-function, but rather is a hypomorphic allele. Together with prior reports describing hypomorphic effects of missense <i>EZH2</i> variants, these results demonstrate that the etiology of Weaver syndrome does not require complete loss of EZH2 enzymatic activity. Toward therapy, we tested four CRISPR gene-editing strategies. We demonstrated that <i>Streptococcus pyogenes</i> Cas9 (<i>Sp</i>Cas9) showed the highest variant correction (70.5%), but unfortunately also the highest alteration of the nonvariant allele (21.1-26.2%), an important consideration for gene-editing treatment of a dominant syndrome. However, <i>Staphylococcus aureus</i> Cas9 (<i>Sa</i>Cas9) gave a variant correction (52.5%) that was not significantly different than <i>Sp</i>Cas9, and encouragingly the lowest alteration of the nonvariant allele (2.0%). Thus, the therapeutic strategy using the small <i>Sa</i>Cas9 enzyme, a size that allows flexibility in therapeutic delivery, was the most optimal for targeting the Weaver syndrome <i>EZH2</i> variant c.2035C>T p.Arg684Cys.</p>\",\"PeriodicalId\":13007,\"journal\":{\"name\":\"Human gene therapy\",\"volume\":\" \",\"pages\":\"618-627\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/hum.2024.170\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.170","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

韦弗综合征是一种罕见的神经发育障碍,包括大头畸形、身材高大、肥胖、大脑异常、智力残疾和对癌症的易感性增加。这种显性单基因疾病是由zeste 2多梳抑制复合体2亚基(EZH2)增强子的种系变异引起的,EZH2是一个关键的表观遗传基因。不幸的是,韦弗综合症没有有效的治疗方法。然而,临床前结果支持潜在的治疗收益,尽管产前发病。因此,我们首次测试了CRISPR/Cas9基因编辑策略是否能够在DNA水平上“纠正”韦弗综合征变异。我们通过人源化小鼠胚胎干细胞(ESCs)中最常见的患者变异位点周围的区域,开始了这些临床前研究。人源化确保dna结合策略可直接转化为人类细胞和患者。然后,我们将人源化区引入ESCs,但现在携带韦弗综合征EZH2变体c.2035C>T . arg684cys,并对该错义变体的酶学特性进行了表征。我们的数据显示ezh2酶活性显著降低,支持先前对该变体的无细胞研究以及其他团队在体外和体内小鼠的研究。有趣的是,这种最常见的变异并没有造成功能的完全丧失,而是一种半胚等位基因。结合先前关于EZH2错义变异的亚形态效应的报道,这些结果表明韦弗综合征的病因并不需要EZH2酶活性的完全丧失。在治疗方面,我们测试了四种CRISPR基因编辑策略。我们证明化脓性链球菌Cas9 (SpCas9)显示出最高的变异校正(70.5%),但不幸的是,非变异等位基因的变异也最高(21.1-26.2%),这是基因编辑治疗显性综合征的重要考虑因素。然而,金黄色葡萄球菌Cas9 (SaCas9)给出的变异纠正(52.5%)与SpCas9没有显著差异,并且令人鼓舞的是,非变异等位基因的最低改变(2.0%)。因此,使用小SaCas9酶的治疗策略是针对韦弗综合征EZH2变体c.2035C>T . arg684cys的最佳治疗策略,这种酶的大小允许治疗递送的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimally Humanized Ezh2 Exon-18 Mouse Cell Lines Validate Preclinical CRISPR/Cas9 Approach to Treat Weaver Syndrome.

Weaver syndrome is a rare neurodevelopmental disorder that encompasses macrocephaly, tall stature, obesity, brain anomalies, intellectual disability, and increased susceptibility to cancer. This dominant monogenic disorder is caused by germline variants in enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), a key epigenetic writer. Unfortunately, there are no effective treatments for Weaver syndrome. However, preclinical results support the potential for therapeutic gains, despite the prenatal onset. Thus, for the first time, we tested whether CRISPR/Cas9 gene-editing strategies may be able to "correct" a Weaver syndrome variant at the DNA level. We initiated these preclinical studies by humanizing the region surrounding the most-common recurring patient-variant location in mouse embryonic stem cells (ESCs). Humanization ensures that DNA-binding strategies will be directly translatable to human cells and patients. We then introduced into ESCs the humanized region, but now carrying the Weaver syndrome EZH2 variant c.2035C>T p.Arg684Cys, and characterized the enzymatic properties of this missense variant. Our data showed a significant and dramatic reduction in EZH2-enzymatic activity, supporting previous cell-free studies of this variant as well as in vitro and in vivo mouse work by other teams. Intriguingly, this most-common variant does not create a complete loss-of-function, but rather is a hypomorphic allele. Together with prior reports describing hypomorphic effects of missense EZH2 variants, these results demonstrate that the etiology of Weaver syndrome does not require complete loss of EZH2 enzymatic activity. Toward therapy, we tested four CRISPR gene-editing strategies. We demonstrated that Streptococcus pyogenes Cas9 (SpCas9) showed the highest variant correction (70.5%), but unfortunately also the highest alteration of the nonvariant allele (21.1-26.2%), an important consideration for gene-editing treatment of a dominant syndrome. However, Staphylococcus aureus Cas9 (SaCas9) gave a variant correction (52.5%) that was not significantly different than SpCas9, and encouragingly the lowest alteration of the nonvariant allele (2.0%). Thus, the therapeutic strategy using the small SaCas9 enzyme, a size that allows flexibility in therapeutic delivery, was the most optimal for targeting the Weaver syndrome EZH2 variant c.2035C>T p.Arg684Cys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信