混合干反胶束:经SEDDS口服蛋白质递送的潜在载体。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Fabrizio Ricci, Sera Lindner, Simona Summonte, René Holm, Dajun Sun, Nathaniel Washburn, Cecilia Bohns Michalowski, Giustino Di Pretoro, Andreas Bernkop-Schnürch
{"title":"混合干反胶束:经SEDDS口服蛋白质递送的潜在载体。","authors":"Fabrizio Ricci, Sera Lindner, Simona Summonte, René Holm, Dajun Sun, Nathaniel Washburn, Cecilia Bohns Michalowski, Giustino Di Pretoro, Andreas Bernkop-Schnürch","doi":"10.1007/s13346-025-01810-2","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to evaluate the potential of mixed dry reverse micelles (dRMs) to increase the lipophilicity of therapeutic proteins and allow their incorporation into self-emulsifying drug delivery systems (SEDDS). Horseradish peroxidase (HRP) was incorporated in mixed dRMs, forming HRP-dRMs, using soybean phosphatidylcholine (SPC) and sodium docusate (SD) as surfactants. HRP-dRMs were characterized with respect to their distribution coefficient and stability in simulated physiological fluids. Moreover, HRP-dRMs were loaded in SEDDS, which were characterized for their payload, stability, distribution coefficients between the lipophilic phase of SEDDS and release medium and their ability to protect the incorporated protein towards enzymatic degradation in aqueous media containing trypsin and chymotrypsin. The synergistic effect of two surfactants to form dRMs led to a payload of 3% (w/v) for the model protein in a lipophilic phase without the use of organic cosolvents. Moreover, the HRP-dRMs incorporation increased the LogD <sub>n-octanol/water</sub> value of HRP from - 3.36 to 3.10. This increment in lipophilicity provided a higher retention of the protein within the oily droplets, and correled with enzymatic degradation studies, where > 95% of the incorporated protein remained intact. This study provided first evidence for unprecedented amount of a model protein of high molecular weight loaded in SEDDS through dRMs incorporation as a possible tool for their oral delivery, with a 15-fold increment compared to the previously achieved results.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed dry reverse micelles: potential carriers for oral protein delivery via SEDDS.\",\"authors\":\"Fabrizio Ricci, Sera Lindner, Simona Summonte, René Holm, Dajun Sun, Nathaniel Washburn, Cecilia Bohns Michalowski, Giustino Di Pretoro, Andreas Bernkop-Schnürch\",\"doi\":\"10.1007/s13346-025-01810-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to evaluate the potential of mixed dry reverse micelles (dRMs) to increase the lipophilicity of therapeutic proteins and allow their incorporation into self-emulsifying drug delivery systems (SEDDS). Horseradish peroxidase (HRP) was incorporated in mixed dRMs, forming HRP-dRMs, using soybean phosphatidylcholine (SPC) and sodium docusate (SD) as surfactants. HRP-dRMs were characterized with respect to their distribution coefficient and stability in simulated physiological fluids. Moreover, HRP-dRMs were loaded in SEDDS, which were characterized for their payload, stability, distribution coefficients between the lipophilic phase of SEDDS and release medium and their ability to protect the incorporated protein towards enzymatic degradation in aqueous media containing trypsin and chymotrypsin. The synergistic effect of two surfactants to form dRMs led to a payload of 3% (w/v) for the model protein in a lipophilic phase without the use of organic cosolvents. Moreover, the HRP-dRMs incorporation increased the LogD <sub>n-octanol/water</sub> value of HRP from - 3.36 to 3.10. This increment in lipophilicity provided a higher retention of the protein within the oily droplets, and correled with enzymatic degradation studies, where > 95% of the incorporated protein remained intact. This study provided first evidence for unprecedented amount of a model protein of high molecular weight loaded in SEDDS through dRMs incorporation as a possible tool for their oral delivery, with a 15-fold increment compared to the previously achieved results.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01810-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01810-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是评估混合干反胶束(dRMs)的潜力,以增加治疗蛋白的亲脂性,并允许其纳入自乳化药物输送系统(SEDDS)。以大豆磷脂酰胆碱(SPC)和docate钠(SD)为表面活性剂,将辣根过氧化物酶(HRP)掺入混合dRMs中,形成HRP-dRMs。研究了HRP-dRMs在模拟生理液体中的分布系数和稳定性。此外,我们还将HRP-dRMs装载在SEDDS中,以其有效载荷、稳定性、SEDDS亲脂相与释放介质之间的分布系数以及在含有胰蛋白酶和凝乳胰蛋白酶的水介质中保护掺入蛋白的酶降解能力为特征。在不使用有机共溶剂的情况下,两种表面活性剂形成dRMs的协同作用导致模型蛋白在亲脂相的有效载荷为3% (w/v)。此外,HRP- drms的掺入使HRP的LogD正辛醇/水值从- 3.36提高到3.10。亲脂性的增加增加了蛋白质在油滴中的保留率,并与酶降解研究相关联,其中约95%的结合蛋白保持完整。该研究首次证明,通过dRMs掺入,SEDDS中装载了前所未有的高分子量模型蛋白,作为其口服给药的可能工具,与之前取得的结果相比,增加了15倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed dry reverse micelles: potential carriers for oral protein delivery via SEDDS.

The aim of this study was to evaluate the potential of mixed dry reverse micelles (dRMs) to increase the lipophilicity of therapeutic proteins and allow their incorporation into self-emulsifying drug delivery systems (SEDDS). Horseradish peroxidase (HRP) was incorporated in mixed dRMs, forming HRP-dRMs, using soybean phosphatidylcholine (SPC) and sodium docusate (SD) as surfactants. HRP-dRMs were characterized with respect to their distribution coefficient and stability in simulated physiological fluids. Moreover, HRP-dRMs were loaded in SEDDS, which were characterized for their payload, stability, distribution coefficients between the lipophilic phase of SEDDS and release medium and their ability to protect the incorporated protein towards enzymatic degradation in aqueous media containing trypsin and chymotrypsin. The synergistic effect of two surfactants to form dRMs led to a payload of 3% (w/v) for the model protein in a lipophilic phase without the use of organic cosolvents. Moreover, the HRP-dRMs incorporation increased the LogD n-octanol/water value of HRP from - 3.36 to 3.10. This increment in lipophilicity provided a higher retention of the protein within the oily droplets, and correled with enzymatic degradation studies, where > 95% of the incorporated protein remained intact. This study provided first evidence for unprecedented amount of a model protein of high molecular weight loaded in SEDDS through dRMs incorporation as a possible tool for their oral delivery, with a 15-fold increment compared to the previously achieved results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信