人工智能在心脏肿瘤学中的应用综述

IF 3.1 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Avirup Guha, Viraj Shah, Tarek Nahle, Shivam Singh, Harikrishnan Hyma Kunhiraman, Fathima Shehnaz, Priyanshu Nain, Omar M Makram, Morteza Mahmoudi, Sadeer Al-Kindi, Anant Madabhushi, Rakesh Shiradkar, Hisham Daoud
{"title":"人工智能在心脏肿瘤学中的应用综述","authors":"Avirup Guha, Viraj Shah, Tarek Nahle, Shivam Singh, Harikrishnan Hyma Kunhiraman, Fathima Shehnaz, Priyanshu Nain, Omar M Makram, Morteza Mahmoudi, Sadeer Al-Kindi, Anant Madabhushi, Rakesh Shiradkar, Hisham Daoud","doi":"10.1007/s11886-025-02215-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>This review explores the role of artificial intelligence (AI) in cardio-oncology, focusing on its latest application across problems in diagnosis, prognosis, risk stratification, and management of cardiovascular (CV) complications in cancer patients. It also highlights multi-omics analysis, explainable AI, and real-time decision-making, while addressing challenges like data heterogeneity and ethical concerns.</p><p><strong>Recent findings: </strong>AI can advance cardio-oncology by leveraging imaging, electronic health records (EHRs), electrocardiograms (ECG), and multi-omics data for early cardiotoxicity detection, stratification and long-term risk prediction. Novel AI-ECG models and imaging techniques improve diagnostic accuracy, while multi-omics analysis identifies biomarkers for personalized treatment. However, significant barriers, including data heterogeneity, lack of transparency, and regulatory challenges, hinder widespread adoption. AI significantly enhances early detection and intervention in cardio-oncology. Future efforts should address the impact of AI technologies on clinical outcomes, and ethical challenges, to enable broader clinical adoption and improve patient care.</p>","PeriodicalId":10829,"journal":{"name":"Current Cardiology Reports","volume":"27 1","pages":"56"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Applications in Cardio-Oncology: A Comprehensive Review.\",\"authors\":\"Avirup Guha, Viraj Shah, Tarek Nahle, Shivam Singh, Harikrishnan Hyma Kunhiraman, Fathima Shehnaz, Priyanshu Nain, Omar M Makram, Morteza Mahmoudi, Sadeer Al-Kindi, Anant Madabhushi, Rakesh Shiradkar, Hisham Daoud\",\"doi\":\"10.1007/s11886-025-02215-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>This review explores the role of artificial intelligence (AI) in cardio-oncology, focusing on its latest application across problems in diagnosis, prognosis, risk stratification, and management of cardiovascular (CV) complications in cancer patients. It also highlights multi-omics analysis, explainable AI, and real-time decision-making, while addressing challenges like data heterogeneity and ethical concerns.</p><p><strong>Recent findings: </strong>AI can advance cardio-oncology by leveraging imaging, electronic health records (EHRs), electrocardiograms (ECG), and multi-omics data for early cardiotoxicity detection, stratification and long-term risk prediction. Novel AI-ECG models and imaging techniques improve diagnostic accuracy, while multi-omics analysis identifies biomarkers for personalized treatment. However, significant barriers, including data heterogeneity, lack of transparency, and regulatory challenges, hinder widespread adoption. AI significantly enhances early detection and intervention in cardio-oncology. Future efforts should address the impact of AI technologies on clinical outcomes, and ethical challenges, to enable broader clinical adoption and improve patient care.</p>\",\"PeriodicalId\":10829,\"journal\":{\"name\":\"Current Cardiology Reports\",\"volume\":\"27 1\",\"pages\":\"56\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Cardiology Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11886-025-02215-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Cardiology Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11886-025-02215-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

综述目的:本文综述了人工智能(AI)在心脏肿瘤学中的作用,重点介绍了人工智能在癌症患者心血管并发症的诊断、预后、风险分层和管理等方面的最新应用。它还强调了多组学分析、可解释的人工智能和实时决策,同时解决了数据异质性和伦理问题等挑战。最近的发现:人工智能可以通过利用成像、电子健康记录(EHRs)、心电图(ECG)和多组学数据进行早期心脏毒性检测、分层和长期风险预测来推进心脏肿瘤学。新的AI-ECG模型和成像技术提高了诊断的准确性,而多组学分析确定了个性化治疗的生物标志物。然而,包括数据异构、缺乏透明度和监管挑战在内的重大障碍阻碍了广泛采用。人工智能显著提高了心脏肿瘤的早期发现和干预。未来的努力应解决人工智能技术对临床结果的影响和伦理挑战,以实现更广泛的临床应用并改善患者护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence Applications in Cardio-Oncology: A Comprehensive Review.

Purpose of review: This review explores the role of artificial intelligence (AI) in cardio-oncology, focusing on its latest application across problems in diagnosis, prognosis, risk stratification, and management of cardiovascular (CV) complications in cancer patients. It also highlights multi-omics analysis, explainable AI, and real-time decision-making, while addressing challenges like data heterogeneity and ethical concerns.

Recent findings: AI can advance cardio-oncology by leveraging imaging, electronic health records (EHRs), electrocardiograms (ECG), and multi-omics data for early cardiotoxicity detection, stratification and long-term risk prediction. Novel AI-ECG models and imaging techniques improve diagnostic accuracy, while multi-omics analysis identifies biomarkers for personalized treatment. However, significant barriers, including data heterogeneity, lack of transparency, and regulatory challenges, hinder widespread adoption. AI significantly enhances early detection and intervention in cardio-oncology. Future efforts should address the impact of AI technologies on clinical outcomes, and ethical challenges, to enable broader clinical adoption and improve patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Cardiology Reports
Current Cardiology Reports CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
6.20
自引率
2.70%
发文量
209
期刊介绍: The aim of this journal is to provide timely perspectives from experts on current advances in cardiovascular medicine. We also seek to provide reviews that highlight the most important recently published papers selected from the wealth of available cardiovascular literature. We accomplish this aim by appointing key authorities in major subject areas across the discipline. Section editors select topics to be reviewed by leading experts who emphasize recent developments and highlight important papers published over the past year. An Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research. We also provide commentaries from well-known figures in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信