基于Kolmogorov-Arnold网络的软质材料散射结构反演。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Chi-Huan Tung, Lijie Ding, Ming-Ching Chang, Guan-Rong Huang, Lionel Porcar, Yangyang Wang, Jan-Michael Y Carrillo, Bobby G Sumpter, Yuya Shinohara, Changwoo Do, Wei-Ren Chen
{"title":"基于Kolmogorov-Arnold网络的软质材料散射结构反演。","authors":"Chi-Huan Tung, Lijie Ding, Ming-Ching Chang, Guan-Rong Huang, Lionel Porcar, Yangyang Wang, Jan-Michael Y Carrillo, Bobby G Sumpter, Yuya Shinohara, Changwoo Do, Wei-Ren Chen","doi":"10.1063/5.0253877","DOIUrl":null,"url":null,"abstract":"<p><p>Small-angle scattering techniques are indispensable tools for probing the structure of soft materials. However, traditional analytical models often face limitations in structural inversion for complex systems, primarily due to the absence of closed-form expressions of scattering functions. To address these challenges, we present a machine learning framework based on the Kolmogorov-Arnold Network (KAN) for directly extracting real-space structural information from scattering spectra in reciprocal space. This model-independent, data-driven approach provides a versatile solution for analyzing intricate configurations in soft matter. By applying the KAN to lyotropic lamellar phases and colloidal suspensions-two representative soft matter systems-we demonstrate its ability to accurately and efficiently resolve structural collectivity and complexity. Our findings highlight the transformative potential of machine learning in enhancing the quantitative analysis of soft materials, paving the way for robust structural inversion across diverse systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 7","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering-based structural inversion of soft materials via Kolmogorov-Arnold networks.\",\"authors\":\"Chi-Huan Tung, Lijie Ding, Ming-Ching Chang, Guan-Rong Huang, Lionel Porcar, Yangyang Wang, Jan-Michael Y Carrillo, Bobby G Sumpter, Yuya Shinohara, Changwoo Do, Wei-Ren Chen\",\"doi\":\"10.1063/5.0253877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small-angle scattering techniques are indispensable tools for probing the structure of soft materials. However, traditional analytical models often face limitations in structural inversion for complex systems, primarily due to the absence of closed-form expressions of scattering functions. To address these challenges, we present a machine learning framework based on the Kolmogorov-Arnold Network (KAN) for directly extracting real-space structural information from scattering spectra in reciprocal space. This model-independent, data-driven approach provides a versatile solution for analyzing intricate configurations in soft matter. By applying the KAN to lyotropic lamellar phases and colloidal suspensions-two representative soft matter systems-we demonstrate its ability to accurately and efficiently resolve structural collectivity and complexity. Our findings highlight the transformative potential of machine learning in enhancing the quantitative analysis of soft materials, paving the way for robust structural inversion across diverse systems.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 7\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0253877\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0253877","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

小角散射技术是探测软质材料结构不可缺少的工具。然而,传统的解析模型在复杂系统的结构反演中往往面临局限性,主要原因是散射函数缺乏封闭形式的表达。为了解决这些挑战,我们提出了一个基于Kolmogorov-Arnold网络(KAN)的机器学习框架,用于直接从互反空间的散射光谱中提取实空间结构信息。这种独立于模型、数据驱动的方法为分析软物质中复杂的配置提供了一种通用的解决方案。通过将KAN应用于溶致层状相和胶体悬浮液这两个具有代表性的软物质系统,我们证明了它能够准确有效地解决结构集体性和复杂性。我们的研究结果突出了机器学习在增强软材料定量分析方面的变革潜力,为跨不同系统的强大结构反演铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattering-based structural inversion of soft materials via Kolmogorov-Arnold networks.

Small-angle scattering techniques are indispensable tools for probing the structure of soft materials. However, traditional analytical models often face limitations in structural inversion for complex systems, primarily due to the absence of closed-form expressions of scattering functions. To address these challenges, we present a machine learning framework based on the Kolmogorov-Arnold Network (KAN) for directly extracting real-space structural information from scattering spectra in reciprocal space. This model-independent, data-driven approach provides a versatile solution for analyzing intricate configurations in soft matter. By applying the KAN to lyotropic lamellar phases and colloidal suspensions-two representative soft matter systems-we demonstrate its ability to accurately and efficiently resolve structural collectivity and complexity. Our findings highlight the transformative potential of machine learning in enhancing the quantitative analysis of soft materials, paving the way for robust structural inversion across diverse systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信