二氧化钛在二维丝光沸石上的固定化:水解条件对纳米复合材料结构、纹理和光学特性的影响。

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beilstein Journal of Nanotechnology Pub Date : 2025-02-10 eCollection Date: 2025-01-01 DOI:10.3762/bjnano.16.12
Marina G Shelyapina, Rosario Isidro Yocupicio-Gaxiola, Gleb A Valkovsky, Vitalii Petranovskii
{"title":"二氧化钛在二维丝光沸石上的固定化:水解条件对纳米复合材料结构、纹理和光学特性的影响。","authors":"Marina G Shelyapina, Rosario Isidro Yocupicio-Gaxiola, Gleb A Valkovsky, Vitalii Petranovskii","doi":"10.3762/bjnano.16.12","DOIUrl":null,"url":null,"abstract":"<p><p>A series of novel TiO<sub>2</sub>/2D mordenite nanocomposites were synthetized by the introduction of titanium tetraethoxide (TEOT) into the interlamellar space of 2D mordenite, its subsequent hydrolysis in water or a solution of 70% ethanol in water for 6, 12, and 24 h, and calcination. The resulting TiO<sub>2</sub>/2D mordenite materials were studied by a set of complementary characterization techniques, including XRD, SEM-EDX, TGA, N<sub>2</sub> sorption, NMR, XPS and UV-vis spectrometry. It was observed that treatment in 70% ethanol solution preserves the ordered layered structure of 2D mordenite because TEOT hydrolysis is slowed down. This, in turn, leads to higher mesoporosity after calcination due to anatase nanoparticles of about 4 nm preventing the collapse of the interlamellar space. Immobilization of TiO<sub>2</sub> on the zeolite surface is evidenced by the formation of Si-O-Ti bonds. The bandgap width of the synthetized nanocomposites was found to be sensitive to the hydrolysis medium.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"128-140"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833174/pdf/","citationCount":"0","resultStr":"{\"title\":\"TiO<sub>2</sub> immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites.\",\"authors\":\"Marina G Shelyapina, Rosario Isidro Yocupicio-Gaxiola, Gleb A Valkovsky, Vitalii Petranovskii\",\"doi\":\"10.3762/bjnano.16.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of novel TiO<sub>2</sub>/2D mordenite nanocomposites were synthetized by the introduction of titanium tetraethoxide (TEOT) into the interlamellar space of 2D mordenite, its subsequent hydrolysis in water or a solution of 70% ethanol in water for 6, 12, and 24 h, and calcination. The resulting TiO<sub>2</sub>/2D mordenite materials were studied by a set of complementary characterization techniques, including XRD, SEM-EDX, TGA, N<sub>2</sub> sorption, NMR, XPS and UV-vis spectrometry. It was observed that treatment in 70% ethanol solution preserves the ordered layered structure of 2D mordenite because TEOT hydrolysis is slowed down. This, in turn, leads to higher mesoporosity after calcination due to anatase nanoparticles of about 4 nm preventing the collapse of the interlamellar space. Immobilization of TiO<sub>2</sub> on the zeolite surface is evidenced by the formation of Si-O-Ti bonds. The bandgap width of the synthetized nanocomposites was found to be sensitive to the hydrolysis medium.</p>\",\"PeriodicalId\":8802,\"journal\":{\"name\":\"Beilstein Journal of Nanotechnology\",\"volume\":\"16 \",\"pages\":\"128-140\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833174/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3762/bjnano.16.12\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.12","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将四乙氧钛(TEOT)引入二维丝光沸石的层间空间,在水中或70%乙醇溶液中水解6、12和24 h,然后煅烧,合成了一系列新型TiO2/2D丝光沸石纳米复合材料。采用XRD、SEM-EDX、TGA、N2吸附、NMR、XPS和UV-vis光谱等互补表征技术对制备的TiO2/2D丝光沸石材料进行了研究。结果表明,在70%乙醇溶液中处理,由于TEOT水解减慢,保留了二维丝光沸石的有序层状结构。这反过来又导致了煅烧后更高的介孔率,因为大约4纳米的锐钛矿纳米颗粒阻止了层间空间的坍塌。二氧化钛在沸石表面的固定可以通过形成Si-O-Ti键来证明。合成的纳米复合材料的带隙宽度对水解介质敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TiO2 immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites.

A series of novel TiO2/2D mordenite nanocomposites were synthetized by the introduction of titanium tetraethoxide (TEOT) into the interlamellar space of 2D mordenite, its subsequent hydrolysis in water or a solution of 70% ethanol in water for 6, 12, and 24 h, and calcination. The resulting TiO2/2D mordenite materials were studied by a set of complementary characterization techniques, including XRD, SEM-EDX, TGA, N2 sorption, NMR, XPS and UV-vis spectrometry. It was observed that treatment in 70% ethanol solution preserves the ordered layered structure of 2D mordenite because TEOT hydrolysis is slowed down. This, in turn, leads to higher mesoporosity after calcination due to anatase nanoparticles of about 4 nm preventing the collapse of the interlamellar space. Immobilization of TiO2 on the zeolite surface is evidenced by the formation of Si-O-Ti bonds. The bandgap width of the synthetized nanocomposites was found to be sensitive to the hydrolysis medium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信